2020
Autores
Brito, T; Pereira, AI; Lima, J; Valente, A;
Publicação
ELECTRONICS
Abstract
Wireless Sensor Networks (WSN) can be used to acquire environmental variables useful for decision-making, such as agriculture and forestry. Installing a WSN on the forest will allow the acquisition of ecological variables of high importance on risk analysis and fire detection. The presented paper addresses two types of WSN developed modules that can be used on the forest to detect fire ignitions using LoRaWAN to establish the communication between the nodes and a central system. The collaboration between these modules generate a heterogeneous WSN; for this reason, both are designed to complement each other. The first module, the HTW, has sensors that acquire data on a wide scale in the target region, such as air temperature and humidity, solar radiation, barometric pressure, among others (can be expanded). The second, the 5FTH, has a set of sensors with point data acquisition, such as flame ignition, humidity, and temperature. To test HTW and 5FTH, a LoRaWAN communication based on the Lorix One gateway is used, demonstrating the acquisition and transmission of forest data (simulation and real cases). Even in internal or external environments, these results allow validating the developed modules. Therefore, they can assist authorities in fighting wildfire and forest surveillance systems in decision-making.
2020
Autores
Almeida, AR; Bessa Goncalves, M; Vasconcelos, DM; Barbosa, MA; Santos, SG;
Publicação
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Abstract
Fibrinogen (Fg) is a pro-inflammatory protein with pro-healing properties. Previous work showed that fibrinogen 3D scaffolds (Fg-3D) promote bone regeneration, but the cellular players were not identified. Osteoclasts are bone resorbing cells that promote bone remodeling in close crosstalk with osteoblasts. Herein, the capacity of osteoclasts differentiated on Fg-3D to degrade the scaffolds and promote osteoblast differentiation was evaluated in vitro. Fg-3D scaffolds were prepared by freeze-drying and osteoclasts were differentiated from primary human peripheral blood monocytes. Results obtained showed osteoclasts expressing the enzymes cathepsin K and tartrate resistant acid phosphatase colonizing Fg-3D scaffolds. Osteoclasts were able to significantly degrade Fg-3D, reducing the scaffold's area, and increasing D-dimer concentration, a Fg degradation product, in their culture media. Osteoclast conditioned media from the first week of differentiation promoted significantly stronger human primary mesenchymal stem/stromal cell (MSC) osteogenic differentiation, evaluated by alkaline phosphatase activity. Moreover, week 1 osteoclast conditioned media promoted earlier MSC osteogenic differentiation, than chemical osteogenesis inductors. TGF-beta 1 was found increased in osteoclast conditioned media from week 1, when compared to week 3 of differentiation. Taken together, our results suggest that osteoclasts are able to differentiate and degrade Fg-3D, producing factors like TGF-beta 1 that promote MSC osteogenic differentiation.
2020
Autores
Pacheco, P; Santos, F; Coimbra, J; Oliveira, E; Rodrigues, NF;
Publicação
2020 IEEE 8th International Conference on Serious Games and Applications for Health, SeGAH 2020
Abstract
Emergency department crowding has been steadily increasing, with a significant part due to non-emergent pathologies. We developed a self-service kiosk to be used by patients while waiting from triage to treatment room allocation, which collects clinical history, usual medication, main complaint and, also collects vital signs. This information is processed and presented in a comprehensive way to the medical staff in order to accelerate diagnostics and treatment selection. This work describes and analyzes the results of the usability evaluation of this kiosk, taking into account the average time per screen, the average time of a complete kiosk session, the application design and the user interaction with devices and the system. The kiosk was tested in several environments with different types of users, allowing the identification of causes of problems and difficulties experienced, as well as solutions to improve the solution. © 2020 IEEE.
2020
Autores
Kurunathan, H; Severino, R; Filho, EV; Tovar, E;
Publicação
Computer Safety, Reliability, and Security. SAFECOMP 2020 Workshops - DECSoS 2020, DepDevOps 2020, USDAI 2020, and WAISE 2020, Lisbon, Portugal, September 15, 2020, Proceedings
Abstract
Advanced driving assistance systems (ADAS) pose stringent requirements to a system’s control and communications, in terms of timeliness and reliability, hence, wireless communications have not been seriously considered a potential candidate for such deployments. However, recent developments in these technologies are supporting unprecedented levels of reliability and predictability. This can enable a new generation of ADAS systems with increased flexibility and the possibility of retrofitting older vehicles. However, to effectively test and validate these systems, there is a need for tools that can support the simulation of these complex communication infrastructures from the control and the networking perspective. This paper introduces a co-simulation framework that enables the simulation of an ADAS application scenario in these two fronts, analyzing the relationship between different vehicle dynamics and the delay required for the system to operate safely, exploring the performance limits of different wireless network configurations. © 2020, Springer Nature Switzerland AG.
2020
Autores
Oliveira, J; Oliveira, PM; Boaventura Cunha, J; Pinho, T;
Publicação
ROBOTICS
Abstract
The design of Multi-Input Multi-Output nonlinear control systems for a quadrotor can be a difficult task. Nature inspired optimization techniques can greatly improve the design of non-linear control systems. Two recently proposed hunting-based swarm intelligence inspired techniques are the Grey Wolf Optimizer (GWO) and the Ant Lion Optimizer (ALO). This paper proposes the use of both GWO and ALO techniques to design a Sliding Mode Control (SMC) flight system for tracking improvement of altitude and attitude in a quadrotor dynamic model. SMC is a nonlinear technique which requires that its strictly coupled parameters related to continuous and discontinuous components be correctly adjusted for proper operation. This requires minimizing the tracking error while keeping the chattering effect and control signal magnitude within suitable limits. The performance achieved with both GWO and ALO, considering realistic disturbed flight scenarios are presented and compared to the classical Particle Swarm Optimization (PSO) algorithm. Simulated results are presented showing that GWO and ALO outperformed PSO in terms of precise tracking, for ideal and disturbed conditions. It is shown that the higher stochastic nature of these hunting-based algorithms provided more confidence in local optima avoidance, suggesting feasibility of getting a more precise tracking for practical use.
2020
Autores
Rocha, A; Adeli, H; Reis, LP; Costanzo, S; Orovic, I; Moreira, F;
Publicação
WorldCIST (3)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.