Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2026

Enhancing logistics through a vehicle routing problem with deliveries, pickups, and backhauls

Autores
Santos, MJ; Jorge, D; Bonomi, V; Ramos, T; Póvoa, A;

Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Today, logistics activities are driven by the pressing need to simultaneously increase efficiency, reduce costs, and promote sustainability. In our research, we tackle this challenge by adapting a general vehicle routing problem with deliveries and pickups to accommodate different types of customers. Customers requiring both delivery and pickup services are mandatory, while those needing only a pickup service (backhaul customers) are optional and are only visited if profitable. A mixed-integer linear programming model is formulated to minimize fuel consumption. This model can address various scenarios, such as allowing mandatory customers to be served with combined or separate delivery or pickup visits, and visiting optional customers either during or only after mandatory customer visits. An adaptive large neighborhood search is developed to solve instances adapted from the literature as well as to solve a real-case study of a beverage distributor. The results show the effectiveness of our approach, demonstrating the potential to utilize the available capacity on vehicles returning to the depot to create profitable and environmentally friendly routes, and so enhancing efficient, cost-effective, and sustainable logistics activities.

2026

A framework for supporting the reproducibility of computational experiments in multiple scientific domains

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
Future Gener. Comput. Syst.

Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors

2025

From "Worse is Better" to Better: Lessons from a Mixed Methods Study of Ansible's Challenges

Autores
Carreira, C; Saavedra, N; Mendes, A; Ferreira, JF;

Publicação
CoRR

Abstract

2025

Swin Transformer Applied to Breast MRI Super-Resolution in a Cross-Cohort Dataset

Autores
Sousa, P; Sousa, H; Pereira, T; Batista, E; Gouveia, P; Oliveira, HP;

Publicação
38th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2025, Madrid, Spain, June 18-20, 2025

Abstract
Advancements in the care for patients with breast cancer have demanded the development of biomechanical breast models for the planning and risk mitigation of such invasive surgical procedures. However, these approaches require large amounts of high-quality magnetic resonance imaging (MRI) training data that is of difficult acquisition and availability. Although this can be solved using synthetic data, generating high resolution images comes at the price of very high computational constraints and tipically low performances. On the other hand, producing lower resolution samples yields better results and efficiency but falls short of meeting health professional standards. Therefore, this work aims to validate a joint approach between lower resolution generative models and the proposed superresolution architecture, titled Shifted Window Image Restoration (SWinIR), which was used to achieve a 4x increase in image size of breast cancer patient MRI samples. Results prove to be promising and to further expand upon the super-resolution state-of-the-art, achieving good maximum peak signal-to-noise ratio of 41.36 and structural similarity index values of 0.962 and thus beating traditional methods and other machine learning architectures. © 2025 IEEE.

2025

Are Users More Willing to Use Formally Verified Password Managers?

Autores
Carreira, C; Ferreira, JF; Mendes, A; Christin, N;

Publicação
CoRR

Abstract

2025

A Systematic Review of Security Communication Strategies: Guidelines and Open Challenges

Autores
Carreira, C; Mendes, A; Ferreira, JF; Christin, N;

Publicação
CoRR

Abstract

  • 1
  • 4212