Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

  • Investigador do CESE - Centro de Engenharia de Sistemas Empresariais, do INESC TEC e Professor Adjunto no Instituto Politécnico do Porto;
  • Doutorado em Engenharia Informática pela Faculdade de Engenharia da Universidade do Porto;
  • A área de especialização foca problemas relacionados com a organização de informação em ambiente colaborativos (redes colaborativas) e a representação de conhecimento de domínio de forma partihada;
  • Participação em vários projetos nacionais e internacionais;
  • Com publicações científicas em atas de conferências e revistas;
  • Os interesses de investigação focam-se no estudo de: 1) métodos e teorias para agilizar a gestão de informação e partilha de conhecimento; 2) mecanismos de representação colaborativa de conhecimento; 3) princípios da semiótica cognitiva na construção de modelos pra estrutturação, organização de informação e visualização de informação em contextos industriais.

Tópicos
de interesse
Detalhes

Detalhes

003
Publicações

2022

Knowledge-based decision intelligence in street lighting management

Autores
Sousa, C; Teixeira, D; Carneiro, D; Nunes, D; Novais, P;

Publicação
INTEGRATED COMPUTER-AIDED ENGINEERING

Abstract
As the availability of computational power and communication technologies increases, Humans and systems are able to tackle increasingly challenging decision problems. Taking decisions over incomplete visions of a situation is particularly challenging and calls for a set of intertwined skills that must be put into place under a clear rationale. This work addresses how to deliver autonomous decisions for the management of a public street lighting network, to optimize energy consumption without compromising light quality patterns. Our approach is grounded in an holistic methodology, combining semantic and Artificial Intelligence principles to define methods and artefacts for supporting decisions to be taken in the context of an incomplete domain. That is, a domain with absence of data and of explicit domain assertions.

2021

An IIoT Solution for SME’s

Autores
Cunha, B; Hernández, E; Rebelo, R; Sousa, C; Ferreira, F;

Publicação
Lecture Notes in Electrical Engineering

Abstract

2021

Boosting E-Auditing Process Through E-Files Semantic Enrichment

Autores
Sousa, C; Carvalho, M; Pereira, C;

Publicação
Trends and Applications in Information Systems and Technologies - Volume 2, WorldCIST 2021, Terceira Island, Azores, Portugal, 30 March - 2 April, 2021.

Abstract

2021

A Model for Designing SMES’ Digital Transformation Roadmap

Autores
Cunha, L; Sousa, C;

Publicação
Advances in Intelligent Systems and Computing

Abstract

2020

A Decision-Support System for Preventive Maintenance in Street Lighting Networks

Autores
Carneiro, D; Nunes, D; Sousa, C;

Publicação
Advances in Intelligent Systems and Computing

Abstract
An holistic approach to decision support systems for intelligent public lighting control, must address both energy efficiency and maintenance. Currently, it is possible to remotely control and adjust luminaries behaviour, which poses new challenges at the maintenance level. The luminary efficiency depends on several efficiency factors, either related to the luminaries or the surrounding conditions. Those factors are hard to measure without understanding the luminary operating boundaries in a real context. For this early stage on preventive maintenance design, we propose an approach based on the combination of two models of the network, wherein each is representing a different but complementary perspective on the classifying of the operating conditions of the luminary as normal or abnormal. The results show that, despite the expected and normal differences, both models have a high degree of concordance in their predictions. © 2020, Springer Nature Switzerland AG.