Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Conceição Nunes Rocha
  • Cargo

    Investigador Auxiliar
  • Desde

    31 janeiro 2014
009
Publicações

2025

Resilient Agent-Based Networks in the Automotive Industry

Autores
Ana Nogueira; Conceição Rocha; Pedro Campos;

Publicação
Machine Learning Perspectives of Agent-Based Models

Abstract

2025

Report on the 8th Workshop on Narrative Extraction from Texts (Text2Story 2025) at ECIR 2025

Autores
Ricardo Campos; Alípio M. Jorge; Adam Jatowt; Sumit Bhatia; Marina Litvak; João Paulo Cordeiro; Conceição Rocha; Hugo Sousa; Luis Filipe Cunha; Behrooz Mansouri;

Publicação
ACM SIGIR Forum

Abstract
The Eighth International Workshop on Narrative Extraction from Texts (Text2Story'25) was held on April 10 th , 2025, in conjunction with the 47 th European Conference on Information Retrieval (ECIR 2025) in Lucca, Italy. During this half-day event, more than 30 attendees engaged in discussions and presentations focused on recent advancements in narrative representation, extraction, and generation. The workshop featured a keynote address and a mix of oral presentations and poster sessions covering nineteen papers. The workshop proceedings are available online 1 . Date: 10 April 2025. Website: https://text2story25.inesctec.pt/.

2024

Report on the 7th International Workshop on Narrative Extraction from Texts (Text2Story 2024) at ECIR 2024

Autores
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S; Litvak, M; Cordeiro, JP; Rocha, C; Sousa, HO; Mansouri, B;

Publicação
SIGIR Forum

Abstract

2023

Report on the 6th International Workshop on Narrative Extraction from Texts (Text2Story 2023) at ECIR 2023

Autores
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S; Litvak, M; Cordeiro, JP; Rocha, C; Sousa, H; Mansouri, B;

Publicação
SIGIR Forum

Abstract

2022

Data-Driven Anomaly Detection and Event Log Profiling of SCADA Alarms

Autores
Andrade, JR; Rocha, C; Silva, R; Viana, JP; Bessa, RJ; Gouveia, C; Almeida, B; Santos, RJ; Louro, M; Santos, PM; Ribeiro, AF;

Publicação
IEEE ACCESS

Abstract
Network human operators' decision-making during grid outages requires significant attention and the ability to perceive real-time feedback from multiple information sources to minimize the number of control actions required to restore service, while maintaining the system and people safety. Data-driven event and alarm management have the potential to reduce human operator cognitive burden. However, the high complexity of events, the data semantics, and the large variety of equipment and technologies are key barriers for the application of Artificial Intelligence (AI) to raw SCADA data. In this context, this paper proposes a methodology to convert a large volume of alarm events into data mining terminology, creating the conditions for the application of modern AI techniques to alarm data. Moreover, this work also proposes two novel data-driven applications based on SCADA data: (i) identification of anomalous behaviors regarding the performance of the protection relays of primary substations, during circuit breaker tripping alarms in High Voltage (HV) and Medium Voltage (MV) lines; (ii) unsupervised learning to cluster similar events in HV line panels, classify new event logs based on the obtained clusters and membership grade with a control parameter that helps to identify rare events. Important aspects associated with data handling and pre-processing are also covered. The results for real data from a Distribution System Operator (DSO) showed: (i) that the proposed method can detect unexpected relay pickup events, e.g., one substation with nearly 41% of the circuit breaker alarms had an 'atypical' event in their context (revealed an overlooked problem on the electrification of a protection relay); (ii) capability to automatically detect and group issues into specific clusters, e.g., SF6 low-pressure alarms and blocks with abnormal profiles caused by event time-delay problems.

Teses
supervisionadas

2019

Resilience in a MultiLayer Network in the Automotive Industry

Autor
Ana Filipa Alves Nogueira

Instituição
INESCTEC

2019

Mapeamento automático da topologia de redes inteligentes de baixa tensão

Autor
João Afonso da Silva Picão

Instituição
INESCTEC

Clustering de relacionamentos entre entidades nomeadas em textos com base no contexto

Autor
Nelson Alves Morais

Instituição
INESCTEC