Detalhes
Nome
Catarina Silva MonteiroCargo
Investigador AuxiliarDesde
01 setembro 2015
Nacionalidade
PortugalCentro
Fotónica AplicadaContactos
+351220402301
catarina.s.monteiro@inesctec.pt
2025
Autores
Lopes, T; Cavaco, R; Capela, D; Dias, F; Teixeira, J; Monteiro, CS; Lima, A; Guimaraes, D; Jorge, PAS; Silva, NA;
Publicação
TALANTA
Abstract
Combining data from different sensing modalities has been a promising research topic for building better and more reliable data-driven models. In particular, it is known that multimodal spectral imaging can improve the analytical capabilities of standalone spectroscopy techniques through fusion, hyphenation, or knowledge distillation techniques. In this manuscript, we focus on the latter, exploring how one can increase the performance of a Laser-induced Breakdown Spectroscopy system for mineral classification problems using additional spectral imaging techniques. Specifically, focusing on a scenario where Raman spectroscopy delivers accurate mineral classification performance, we show how to deploy a knowledge distillation pipeline where Raman spectroscopy may act as an autonomous supervisor for LIBS. For a case study concerning a challenging Li-bearing mineral identification of spodumene and petalite, our results demonstrate the advantages of this method in improving the performance of a single-technique system. LIBS trained with labels obtained by Raman presents an enhanced classification performance. Furthermore, leveraging the interpretability of the model deployed, the workflow opens opportunities for the deployment of assisted feature discovery pipelines, which may impact future academic and industrial applications.
2025
Autores
Teixeira, J; Lopes, T; Capela, D; Monteiro, CS; Guimaraes, D; Lima, A; Jorge, PAS; Silva, NA;
Publicação
SCIENTIFIC REPORTS
Abstract
Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission. To address these challenges, this work explores the potential of using techniques from conventional RGB imaging to enhance the dynamic range of spectral imaging. Drawing inspiration from multi-exposure fusion techniques, we propose an algorithm that calculates a global weight map using exposure and contrast metrics. This map is then used to merge datasets acquired with the same technique under distinct acquisition conditions. With case studies focused on LIBS and Raman Imaging, we demonstrate the potential of our approach to enhance the quality of spectral data, mitigating the impact of the aforementioned limitations. Results show a consistent improvement in overall contrast and peak signal-to-noise ratios of the merged images compared to single-condition images. Additionally, from the application perspective, we also discuss the impact of our approach on sample classification problems. The results indicate that LIBS-based classification of Li-bearing minerals (with Raman serving as the ground truth), is significantly improved when using merged images, reinforcing the advantages of the proposed solution for practical applications.
2025
Autores
Ferreira, TD; Monteiro, C; Gonçalves, C; Frazao, O; Silva, NA;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
Polarization-based fiber sensors rely on the dynamics of the Stokes vector at the output of the optical fiber to probe stimuli that induce polarization variations. However, these sensors often suffer from limitations in sensitivity, precision, and reproducibility. In this work, we address these challenges by incorporating concepts from the Mueller matrix formalism to enhance the capabilities of such sensors. Specifically, we measure the Mueller matrix in the polarization basis that describes how the polarization evolves inside the optical fiber. Leveraging this formalism, we configure the system as a precise sensor to detect deformations along the fiber. By utilizing the Fisher Information framework, we significantly improve accuracy and resolution, enabling the detection of subtle perturbations with greater precision. This study introduces a novel approach for precise polarization control and advanced fiber-based sensing applications.
2025
Autores
Lopes, T; Teixeira, J; Rocha, VV; Ferreira, TD; Monteiro, CS; Jorge, PAS; Silva, NA;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
Despite their extreme sensitivity, speckle-based fiber optical sensors are typically limited by the camera frame rate and dynamic range. In this context, recent developments in event-based sensors make them a promising and affordable tool for high-speed interrogation for such class of sensors, offering a low-latency approach to detecting dynamic changes in illumination patterns, well-suited for fast interrogation with frequency response up to the MHz range. In this manuscript, we investigate the potential of using an event-based vision sensor (EVS) as an interrogator for a speckle-based optical fiber sensor operating at 532nm to detect vibrations induced by an off-the-shelf sound speaker. In contact with the fiber, these vibrations induce dynamic changes in the speckle pattern, which are tracked by the EVS and processed to construct temporal frames with timestamps below 100 mu s. Approximating the differential operator of the deformation in the linear regime, we show a successful reconstruction of the acoustic signal for two illustrative case studies: i)a single-frequency signal at 1.2 KHz and ii)a linear ramp between 300 Hz to 2.5 kHz. The results demonstrate the ability to accurately identify not only the fundamental frequencies but also their harmonics generated by the speaker up to 5 KHz, paving an innovative path to harness the potential of speckle-based sensors in multiple scenarios of optical metrology and dynamic sensing applications.
2024
Autores
Cunha, C; Monteiro, C; Vaz, A; Silva, S; Frazao, O; Novais, S;
Publicação
SENSORS
Abstract
This paper presents an approach to enhancing sensitivity in optical sensors by integrating self-image theory and graphene oxide coating. The sensor is specifically engineered to quantitatively assess glucose concentrations in aqueous solutions that simulate the spectrum of glucose levels typically encountered in human saliva. Prior to sensor fabrication, the theoretical self-image points were rigorously validated using Multiphysics COMSOL 6.0 software. Subsequently, the sensor was fabricated to a length corresponding to the second self-image point (29.12 mm) and coated with an 80 mu m/mL graphene oxide film using the Layer-by-Layer technique. The sensor characterization in refractive index demonstrated a wavelength sensitivity of 200 +/- 6 nm/RIU. Comparative evaluations of uncoated and graphene oxide-coated sensors applied to measure glucose in solutions ranging from 25 to 200 mg/dL showed an eightfold sensitivity improvement with one bilayer of Polyethyleneimine/graphene. The final graphene oxide-based sensor exhibited a sensitivity of 10.403 +/- 0.004 pm/(mg/dL) and demonstrated stability with a low standard deviation of 0.46 pm/min and a maximum theoretical resolution of 1.90 mg/dL.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.