2025
Autores
Fernandes, P; Ciardhuáin, SO; Antunes, M;
Publicação
COMPUTERS & SECURITY
Abstract
Detecting malware in computer networks and data streams from Android devices remains a critical challenge for cybersecurity researchers. While machine learning and deep learning techniques have shown promising results, these approaches often require large volumes of labelled data, offer limited interpretability, and struggle to adapt to sophisticated threats such as zero-day attacks. Moreover, their high computational requirements restrict their applicability in resource-constrained environments. This research proposes an innovative approach that advances the state of the art by offering practical solutions for dynamic and data-limited security scenarios. By integrating natural statistical laws, particularly Benford's law, with dissimilarity functions, a lightweight, fast, and scalable model is developed that eliminates the need for extensive training and large labelled datasets while improving resilience to data imbalance and scalability for large-scale cybersecurity applications. Although Benford's law has demonstrated potential in anomaly detection, its effectiveness is limited by the difficulty of selecting relevant features. To overcome this, the study combines Benford's law with several distance functions, including Median Absolute Deviation, Kullback-Leibler divergence, Euclidean distance, and Pearson correlation, enabling statistically grounded feature selection. Additional metrics, such as the Kolmogorov test, Jensen-Shannon divergence, and Z statistics, were used for model validation. This approach quantifies discrepancies between expected and observed distributions, addressing classic feature selection challenges like redundancy and imbalance. Validated on both balanced and unbalanced datasets, the model achieved strong results: 88.30% accuracy and 85.08% F1-score in the balanced set, 92.75% accuracy and 95.29% F1-score in the unbalanced set. The integration of Benford's law with distance functions significantly reduced false positives and negatives. Compared to traditional Machine Learning methods, which typically require extensive training and large datasets to achieve F1 scores between 92% and 99%, the proposed approach delivers competitive performance while enhancing computational efficiency, robustness, and interpretability. This balance makes it a practical and scalable alternative for real-time or resource-constrained cybersecurity environments.
2025
Autores
Martins, AR; Ferreira, MC; Fernandes, CS;
Publicação
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS
Abstract
Purpose:To synthesizethe availableevidenceaboutthe use of HealthInformationTechnology(HIT)to supportpatientsduringhemodialysis.Methods:TheJoannaBriggsInstitute's methodologicalguidelinesfor scopingreviewsandthe PRISMA-ScRchecklistwereemployed.BibliographicsearchesacrossMEDLINE (R), CINAHL (R), PsychologyandBehavioralSciencesCollection,Scopus,MedicLatina,and Cochraneyielded932 records.Results:Eighteenstudiespublishedbetween2003and2023wereincluded.Theyexploreda rangeof HITs,includingvirtualreality,exergames,websites,and mobileapplications,all specificallydevelopedfor use duringthe intradialyticperiod.Conclusion:Thisstudyhighlightsthe HITsdevelopedfor use duringhemodialysistreatment,supportingphysicalexercise,diseasemanagement,and enhancementof self-efficacyand self-care.
2025
Autores
Pedroso, JP; Ikeda, S;
Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
This paper addresses the problem of maximizing the expected size of a matching in the case of unreliable vertices and/or edges. The assumption is that the solution is built in several steps. Ina given step, edges with successfully matched vertices are made permanent; but upon edge or vertex failures, the remaining vertices become eligible for reassignment. This process maybe repeated a given number of times, and the objective is to end with the overall maximum number of matched vertices. An application of this problem is found in kidney exchange programs, going on in several countries, where a vertex is an incompatible patient-donor pair and an edge indicates cross-compatibility between two pairs; the objective is to match these pairs so as to maximize the number of served patients. A new scheme is proposed for matching rearrangement in case of failure, along with a prototype algorithm for computing the optimal expectation for the number of matched edges (or vertices), considering a possibly limited number of rearrangements. Computational experiments reveal the relevance and limitations of the algorithm, in general terms and for the kidney exchange application.
2025
Autores
Ferreira, MV; Souza, M; Rios, TN; Fernandes, IFC; Nery, J; Gama, J; Bifet, A; Rios, RA;
Publicação
SCIENTIFIC DATA
Abstract
Efficient public transportation management is essential for the development of large urban centers, providing several benefits such as comprehensive coverage of population mobility, reduction of transport costs, better control of traffic congestion, and significant reduction of environmental impact limiting gas emissions and pollution. Realizing these benefits requires a deeply understanding the population and transit patterns and the adoption of approaches to model multiple relations and characteristics efficiently. This work addresses these challenges by providing a novel dataset that includes various public transportation components from three different systems: regular buses, subway, and BRT (Bus Rapid Transit). Our dataset comprises daily information from about 700,000 passengers in Salvador, one of Brazil's largest cities, and local public transportation data with approximately 2,000 vehicles operating across nearly 400 lines, connecting almost 3,000 stops and stations. With data collected from March 2024 to March 2025 at a frequency lower than one minute, SUNT stands as one of the largest, most comprehensive, and openly available urban datasets in the literature.
2025
Autores
Fernandes, P; Ciardhuáin, SO; Antunes, M;
Publicação
Pattern Recognition and Image Analysis - 12th Iberian Conference, IbPRIA 2025, Coimbra, Portugal, June 30 - July 3, 2025, Proceedings, Part I
Abstract
The increasing connectivity of Internet of Medical Things (IoMT) devices has accentuated their susceptibility to cyberattacks. The sensitive data they handle makes them prime targets for information theft and extortion, while outdated and insecure communication protocols further elevate security risks. This paper presents a lightweight and innovative approach that combines Benford’s law with statistical distance functions to detect attacks in IoMT devices. The methodology uses Benford’s law to analyze digit frequency and classify IoMT devices traffic as benign or malicious, regardless of attack type. It employs distance-based statistical functions like Jensen-Shannon divergence, Kullback-Leibler divergence, Pearson correlation, and the Kolmogorov test to detect anomalies. Experimental validation was conducted on the CIC-IoMT-2024 benchmark dataset, comprising 45 features and multiple attack types. The best performance was achieved with the Kolmogorov test (a=0.01), particularly in DoS ICMP attacks, yielding a precision of 99.24%, a recall of 98.73%, an F1 score of 98.97%, and an accuracy of 97.81%. Jensen-Shannon divergence also performed robustly in detecting SYN-based attacks, demonstrating strong detection with minimal computational cost. These findings confirm that Benford’s law, when combined with well-chosen statistical distances, offers a viable and efficient alternative to machine learning models for anomaly detection in constrained environments like IoMT. © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Capela, D; Pessanha, S; Lopes, T; Cavaco, R; Teixeira, J; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
JOURNAL OF HAZARDOUS MATERIALS
Abstract
Management and reuse of wood waste can be a challenging process due to the frequent presence of hazardous contaminants. Conventional detection methods are often limited by the need for excessive sample preparation and lengthy and expensive analysis. Laser-induced Breakdown Spectroscopy (LIBS) is a rapid and micro- destructive technique that can be a promising alternative, providing in-situ and real-time analysis, with minimal to no sample preparation required. In this study, LIBS imaging was used to analyze wood waste samples to determine the presence of contaminants such as As, Ba, Cd, Cr, Cu, Hg, Pb, Sb, and Ti. For this analysis, a methodology based on detecting three lines per element was developed, offering a screening method that can be easily adapted to perform qualitative analysis in industrial contexts with high throughput operations. For the LIBS experimental lines selection, control and reference samples, and a pilot set of 10 wood wastes were analysed. Results were validated by two different X-ray Fluorescence (XRF) systems, an imaging XRF and a handheld XRF, that provided spatial elemental information and spectral information, respectively. The results obtained highlighted LIBS ability to detect highly contaminated samples and the importance of using a 3-line criteria to mitigate spectral interferences and discard outliers. To increase the dataset, a LIBS large-scale study was performed using 100 samples. These results were only corroborated by the XRF-handheld system, as it provides a faster alternative. In particular cases, ICP-MS analysis was also performed. The success rates achieved, mostly above 88 %, confirm the capability of LIBS to perform this analysis, contributing to more sustainable waste management practices and facilitating the quick identifi- cation and remediation of contaminated materials.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.