2022
Autores
Rosa, JL; Garcia, P; Vincent, FH; Cardoso, V;
Publicação
PHYSICAL REVIEW D
Abstract
Pushed by a number of advances, electromagnetic observatories have now reached the horizon scale of supermassive black holes. The existence and properties of horizons in our universe is one of the outstanding fundamental issues that can now be addressed. Here we investigate the ability to discriminate between black holes and compact, horizonless objects, focusing on the lensing of hot spots around compact objects. We work in particular with boson and Proca stars as central objects, and show that the absence of a horizon gives rise to a characteristic feature-photons that plow through the central object and produce an extra image. This feature should be universal for central objects made of matter weakly coupled to the standard model.
2022
Autores
Silva, D; Monteiro, CS; Silva, SO; Frazao, O; Pinto, JV; Raposo, M; Ribeiro, PA; Serio, S;
Publicação
PHOTONICS
Abstract
Thin films of titanium dioxide (TiO2) and titanium (Ti) were deposited onto glass and optical fiber supports through DC magnetron sputtering, and their transmission was characterized with regard to their use in optical fiber-based sensors. Deposition parameters such as oxygen partial pressure, working pressure, and sputtering power were optimized to attain films with a high reflectance. The films deposited on glass supports were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Regarding the deposition parameters, all three parameters were tested simultaneously, changing the working pressure, the sputtering power, and the oxygen percentage. It was possible to conclude that a lower working pressure and higher applied power lead to films with a higher reflectance. Through the analysis of the as-sputtered thin films using X-ray diffraction, the deposition of both Ti and TiO2 films was confirmed. To study the applicability of TiO2 and Ti in fiber sensing, several thin films were deposited in single mode fibers (SMFs) using the sputtering conditions that revealed the most promising results in the glass supports. The sputtered TiO2 and Ti thin films were used as mirrors to increase the visibility of a low-finesse Fabry-Perot cavity and the possible sensing applications were studied.
2022
Autores
Kassam, Z; Almeida, PS; Shoker, A;
Publicação
2022 31ST INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2022)
Abstract
TCP is typically the default transport protocol of choice for its supposed reliability, even for message-oriented middleware (e.g., ZeroMQ) or inter-actor communication (e.g., distributed Erlang). However, under network issues, TCP connections can fail, which requires ensuring both at-least-once and at-most-once delivery at the upper middleware layer. Moreover, the use of TCP at scale, in highly concurrent systems, can lead to drastic performance loss due to the need for TCP connection multiplexing and the resulting head-of-line blocking. This paper introduces Exon, an oblivious exactly-once messaging protocol, and a corresponding lightweight library implementation. Exon uses a novel strategy of a per-message four-way protocol to ensure oblivious exactly-once messaging, with on-demand protocol-level soft half-connections that are established when needed and safely discarded. This achieves correctness, obliviousness, and performance, through merging and pipelining basic protocol messages. The empirical evaluation of Exon demonstrates significant improvements in throughput and latency under packet loss, while maintaining a negligible overhead over TCP in healthy networks.
2022
Autores
Costa, T; Coelho, L; Silva, MF;
Publicação
Advances in Medical Technologies and Clinical Practice
Abstract
2022
Autores
Silva R.; Gouveia C.; Carvalho L.; Pereira J.;
Publicação
IEEE PES Innovative Smart Grid Technologies Conference Europe
Abstract
This paper presents a model predictive control (MPC) framework for battery energy storage systems (BESS) management considering models for battery degradation, system efficiency and V-I characteristics. The optimization framework has been tested for microgrids with different renewable generation and load mix considering several operation strategies. A comparison for one-year simulations between the proposed model and a naïve BESS model, show an increase in computation times that still allows the application of the framework for real-time control. Furthermore, a trade-off between financial revenue and reduced BESS degradation was evaluated for the yearly simulation, considering the degradation model proposed. Results show that a conservative BESS usage strategy can have a high impact on the asset's lifetime and on the expected system revenues, depending on factors such as the objective function and the degradation threshold considered.
2022
Autores
Melo, P; Araujo, RE;
Publicação
2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC)
Abstract
Switched reluctance machines (SRM) are simple, robust and fault tolerant machines, usually operating under strong nonlinear characteristics. Hence, SRM modeling is a most demanding task, in particular core losses. Non-sinusoidal flux density waveforms in different stator and rotor core sections, in addition to lamination non-uniform distribution are challenging phenomena to be addressed. This is still an ongoing research field. The purpose of this paper is to develop a comparative analysis between a linear and non-linear simulation model for core loss distribution in a three-phase 6/4 SRM. Five different steady-state operation modes will be addressed.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.