2022
Autores
Frade, J; Pereira, T; Morgado, J; Silva, F; Freitas, C; Mendes, J; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;
Publicação
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
Abstract
Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.
2022
Autores
Boto, JM; Marreiros, A; Diogo, P; Pinto, E; Mateus, MP;
Publicação
PUBLIC HEALTH NUTRITION
Abstract
Objective: This study aimed to identify health behaviours that determine adolescent's adherence to the Mediterranean diet (MD) through a decision tree statistical approach. Design: Cross-sectional study, with data collected through a self-fulfilment questionnaire with five sections: (1) eating habits; (2) adherence to the MD (KIDMED index); (3) physical activity; (4) health habits and (5) socio-demographic characteristics. Anthropometric and blood pressure data were collected by a trained research team. The Automatic Chi-square Interaction Detection (CHAID) method was used to identify health behaviours that contribute to a better adherence to the MD. Setting: Eight public secondary schools, in Algarve, Portugal. Participants: Adolescents with ages between 15 and 19 years (n 325). Results: According to the KIDMED index, we found a low adherence to MD in 9 center dot 0 % of the participants, an intermediate adherence in 45 center dot 5 % and a high adherence in 45 center dot 5 %. Participants that regularly have breakfast, eat vegetable soup, have a second piece of fruit/d, eat fresh or cooked vegetables 1 or more times a day, eat oleaginous fruits at least 2 to 3 times a week, and practice sports and leisure physical activities outside school show higher adherence to the MD (P < 0 center dot 001). Conclusions: The daily intake of two pieces of fruit and vegetables proved to be a determinant health behaviour for high adherence to MD. Strategies to promote the intake of these foods among adolescents must be developed and implemented.
2022
Autores
Gonçalves, T; Torto, IR; Teixeira, LF; Cardoso, JS;
Publicação
CoRR
Abstract
2022
Autores
Cruz Cunha, MM; Martinho, R; Rijo, R; Domingos, D; Peres, E;
Publicação
CENTERIS/ProjMAN/HCist
Abstract
2022
Autores
Lourenco, CB; Pinto, JS;
Publicação
PROGRAMMING LANGUAGES AND SYSTEMS, ESOP 2022
Abstract
We study principles and models for reasoning inductively about properties of distributed systems, based on programmed atomic handlers equipped with contracts. We present the Why3-do library, leveraging a state of the art software verifier for reasoning about distributed systems based on our models. A number of examples involving invariants containing existential and nested quantifiers (including Dijsktra's self-stabilizing systems) illustrate how the library promotes contract-based modular development, abstraction barriers, and automated proofs.
2022
Autores
Cardoso, AS; Renna, F; Moreno-Llorca, R; Alcaraz-Segura, D; Tabik, S; Ladle, RJ; Vaz, AS;
Publicação
ECOSYSTEM SERVICES
Abstract
Crowdsourced social media data has become popular for assessing cultural ecosystem services (CES). Nevertheless, social media data analyses in the context of CES can be time consuming and costly, particularly when based on the manual classification of images or texts shared by people. The potential of deep learning for automating the analysis of crowdsourced social media content is still being explored in CES research. Here, we use freely available deep learning models, i.e., Convolutional Neural Networks, for automating the classification of natural and human (e.g., species and human structures) elements relevant to CES from Flickr and Wikiloc images. Our approach is developed for Peneda-Ger <^>es (Portugal) and then applied to Sierra Nevada (Spain). For Peneda-Ger <^>es, image classification showed promising results (F1-score ca. 80%), highlighting a preference for aesthetics appreciation by social media users. In Sierra Nevada, even though model performance decreased, it was still satisfactory (F1-score ca. 60%), indicating a predominance of people's pursuit for cultural heritage and spiritual enrichment. Our study shows great potential from deep learning to assist in the automated classification of human-nature interactions and elements from social media content and, by extension, for supporting researchers and stakeholders to decode CES distributions, benefits, and values.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.