2023
Autores
Maskeliunas, R; Damasevicius, R; Blazauskas, T; Swacha, J; Queiros, R; Paiva, JC;
Publicação
COMPUTERS
Abstract
This paper is poised to inform educators, policy makers and software developers about the untapped potential of PWAs in creating engaging, effective, and personalized learning experiences in the field of programming education. We aim to address a significant gap in the current understanding of the potential advantages and underutilisation of Progressive Web Applications (PWAs) within the education sector, specifically for programming education. Despite the evident lack of recognition of PWAs in this arena, we present an innovative approach through the Framework for Gamification in Programming Education (FGPE). This framework takes advantage of the ubiquity and ease of use of PWAs, integrating it with a Pareto optimized gamified programming exercise selection model ensuring personalized adaptive learning experiences by dynamically adjusting the complexity, content, and feedback of gamified exercises in response to the learners' ongoing progress and performance. This study examines the mobile user experience of the FGPE PLE in different countries, namely Poland and Lithuania, providing novel insights into its applicability and efficiency. Our results demonstrate that combining advanced adaptive algorithms with the convenience of mobile technology has the potential to revolutionize programming education. The FGPE+ course group outperformed the Moodle group in terms of the average perceived knowledge (M = 4.11, SD = 0.51).
2023
Autores
Adot, E; Akhmedova, A; Alvelos, H; Barbosa Pereira, S; Berbegal Mirabent, J; Cardoso, S; Domingues, P; Franceschini, F; Gil Domenech, D; Machado, R; Maisano, DA; Marimon, F; Mas Machuca, M; Mastrogiacomo, L; Melo, AI; Migueis, V; Rosa, MJ; Sampaio, P; Torrents, D; Xambre, AR;
Publicação
INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT
Abstract
PurposeThe paper aims to define a dashboard of indicators to assess the quality performance of higher education institutions (HEI). The instrument is termed SMART-QUAL.Design/methodology/approachTwo sources were used in order to explore potential indicators. In the first step, information disclosed in official websites or institutional documentation of 36 selected HEIs was analyzed. This first step also included in depth structured high managers' interviews. A total of 223 indicators emerged. In a second step, recent specialized literature was revised searching for indicators, capturing additional 302 indicators.FindingsEach one of the 525 total indicators was classified according to some attributes and distributed into 94 intermediate groups. These groups feed a debugging, prioritization and selection process, which ended up in the SMART-QUAL instrument: a set of 56 key performance indicators, which are grouped in 15 standards, and, in turn, classified into the 3 HEI missions. A basic model and an extended model are also proposed.Originality/valueThe paper provides a useful measure of quality performance of HEIs, showing a holistic view to monitor HEI quality from three fundamental missions. This instrument might assist HEI managers for both assessing and benchmarking purposes. The paper ends with recommendations for university managers and public administration authorities.
2023
Autores
Branco, F; Gonçalves, C; Gonçalves, R; Moreira, F; Au Yong Oliveira, M; Martins, J;
Publicação
Lecture Notes in Networks and Systems
Abstract
The thermal SPA sector is currently experiencing a stable growth trend, which according to the World Tourism Organization (WTO) is expected to continue over the upcoming years. In Portugal, the sector has a very significant profile, with the existence of almost a hundred SPAs and thermal SPAs that generate a business volume (direct and indirect) of over 30 M€ per year. Although the beginning of the process of digital transformation of the sector is already visible, there is no holistic view of the sector which means that the currently existing information systems (IS) do not present a useful response to the needs faced by the sector. Therefore, an architecture proposal was conceived and described for an IS that provides a useful, efficient, and agile response to the needs of the entire thermalism sector and its stakeholders. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2023
Autores
Oliveira, LT; Carravilla, MA; Oliveira, JF; Toledo, FMB;
Publicação
Pesquisa Operacional
Abstract
Irregular strip packing problems are present in a wide variety of industrial sectors, such as the garment, footwear, furniture and metal industry. The goal is to find a layout in which an object will be cut into small pieces with minimum raw-material waste. Once a layout is obtained, it is necessary to determine the path that the cutting tool has to follow to cut the pieces from the layout. In the latter, the goal is to minimize the cutting distance (or time). Although industries frequently use this solution sequence, the trade-off between the packing and the cutting path problems can significantly impact the production cost and productivity. A layout with minimum raw-material waste, obtained through the packing problem resolution, can imply a longer cutting path compared to another layout with more material waste but a shorter cutting path, obtained through an integrated strategy. Layouts with shorter cutting path are worthy of consideration because they may improve the cutting process productivity. In this paper, both problems are solved together using a biobjective matheuristic based on the Biased Random-Key Genetic Algorithm. Our approach uses this algorithm to select a subset of the no-fit polygons edges to feed the mathematical model, which will compute the layout waste and cutting path length. Solving both strip packing and cutting path problems simultaneously allows the decision-maker to analyze the compromise between the material waste and the cutting path distance. As expected, the computational results showed the trade-off’s relevance between these problems and presented a set of solutions for each instance solved. © 2023, Sociedade Brasileira de Pesquisa Operacional. All rights reserved.
2023
Autores
Borges, A; Carvalho, M; Maia, M; Guimaraes, M; Carneiro, D;
Publicação
SOCIO-ECONOMIC PLANNING SCIENCES
Abstract
In order to address one of the most challenging problems in hospital management - patients' absenteeism without prior notice - this study analyses the risk factors associated with this event. To this end, through real data from a hospital located in the North of Portugal, a prediction model previously validated in the literature is used to infer absenteeism risk factors, and an explainable model is proposed, based on a modified CART algorithm. The latter intends to generate a human-interpretable explanation for patient absenteeism, and its implementation is described in detail. Furthermore, given the significant impact, the COVID-19 pandemic had on hospital management, a comparison between patients' profiles upon absenteeism before and during the COVID-19 pandemic situation is performed. Results obtained differ between hospital specialities and time periods meaning that patient profiles on absenteeism change during pandemic periods and within specialities.
2023
Autores
Ribeiro, L; Oliveira, HP; Hu, X; Pereira, T;
Publicação
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023
Abstract
PPG signal is a valuable resource for continuous heart rate monitoring; however, this signal suffers from artifact movements, which is particularly relevant during physical exercise and makes this biomedical signal difficult to use for heart rate detection during those activities. The purpose of this study was to develop learning models to determine heart rate using data from wearables (PPG and acceleration signals) and dealing with noise during physical exercise. Learning models based on CNNs and LSTMs were developed to predict the heart rate. The PPG signal was combined with data from accelerometers trying to overcome the noise movement on the PPG signal. Two datasets were used on this work: the 2015 IEEE Signal Processing Cup (SPC) dataset was used for training and testing, and another dataset was used for validation of the learning model (PPG-DaLiA dataset). The predictions obtained by the learning model represented a mean average error of 7.033±5.376 bpm for the SCP dataset, while a mean average error of 9.520±8.443 bpm for the validation set. The use of acceleration data increases the performance of the learning models on the prediction of the heart rate, showing the benefits of using this source of data to overcome the noise movement problem on the PPG signal. The combination of PPG signal with acceleration data could allow the learning models to use more information regarding the motion artifacts that affect the PPG and improve performance on the physiological event detections, which will largely spread the use of wearables on the healthcare applications for continuous monitor the physiological state allowing early and accurate detection of pathological events.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.