Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2023

E-APK: Energy pattern detection in decompiled android applications

Autores
Gregorio, N; Bispo, J; Fernandes, JP; de Medeiros, SQ;

Publicação
JOURNAL OF COMPUTER LANGUAGES

Abstract
Energy efficiency is a non-functional requirement that developers must consider, particularly when building software for battery-operated devices like mobile ones: a long-lasting battery is an essential requirement for an enjoyable user experience.In previous studies, it has been shown that many mobile applications include inefficiencies that cause battery to be drained faster than necessary. Some of these inefficiencies result from software patterns that have been catalogued, and for which more energy-efficient alternatives are also known.The existing catalogues, however, assume as a fundamental requirement that one has access to the source code of an application in order to be able to analyse it. This requirement makes independent energy analysis challenging, or even impossible, e.g. for a mobile user or, most significantly, an App Store trying to provide information on how efficient an application being submitted for publication is.We study the viability of looking for known energy patterns in applications by decompiling them and analysing the resulting code. For this, we decompiled and analysed 420 open-source applications by extending an existing tool, which is now capable of transparently decompiling and analysing android applications. With the collected data, we performed a comparative study of the presence of four energy patterns between the source code and the decompiled code.We performed two types of analysis: (i) comparing the total number of energy pattern detections; (ii) comparing the similarity between energy pattern detections. When comparing the total number of detections in source code against decompiled code, we found that 79.29% of the applications reported the same number of energy pattern detections.To test the similarity between source code and APKs, we calculated, for each application, a similarity score based on our four implemented detectors. Of all applications, 35.76% achieved a perfect similarity score of 4, and 89.40% got a score of 3 or more out of 4. Furthermore, only two applications got a score of 0.When viewed in tandem, the results of the two analyses we performed point in a promising direction. They provide initial evidence that static analysis techniques, typically used in source code, can be a viable method to inspect APKs when access to source code is restricted, and further research in this area is worthwhile.

2023

Hybrid SkipAwareRec: A Streaming Music Recommendation System

Autores
Ramos, R; Oliveira, L; Vinagre, J;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I

Abstract
In an automatic music playlist generator, such as an automated online radio channel, how should the system react when a user hits the skip button? Can we use this type of negative feedback to improve the list of songs we will playback for the user next? We propose SkipAwareRec, a next-item recommendation system based on reinforcement learning. SkipAwareRec recommends the best next music categories, considering positive feedback consisting of normal listening behaviour, and negative feedback in the form of song skips. Since SkipAwareRec recommends broad categories, it needs to be coupled with a model able to choose the best individual items. To do this, we propose Hybrid SkipAwareRec. This hybrid model combines the SkipAwareRec with an incremental Matrix Factorisation (MF) algorithm that selects specific songs within the recommended categories. Our experiments with Spotify's Sequential Skip Prediction Challenge dataset show that Hybrid SkipAwareRec has the potential to improve recommendations by a considerable amount with respect to the skip-agnostic MF algorithm. This strongly suggests that reformulating the next recommendations based on skips improves the quality of automatic playlists. Although in this work we focus on sequential music recommendation, our proposal can be applied to other sequential content recommendation domains, such as health for user engagement.

2023

An Inverse Kinematics Approach for the Analysis and Active Control of a Four-UPR Motion-Compensated Platform for UAV-ASV Cooperation

Autores
Pereira, P; Campilho, R; Pinto, A;

Publicação
MACHINES

Abstract
In the present day, unmanned aerial vehicle (UAV) technology is being used for a multitude of inspection operations, including those in offshore structures such as wind-farms. Due to the distance of these structures to the coast, drones need to be carried to these structures via ship. To achieve a completely autonomous operation, the UAV can greatly benefit from an autonomous surface vehicle (ASV) to transport the UAV to the operation location and coordinate a successful landing between the two. This work presents the concept of a four-link parallel platform to perform wave-motion synchronization to facilitate UAV landings. The parallel platform consists of two base floaters connected with rigid rods, linked by linear actuators to a top mobile platform for the landing of a UAV. Using an inverse kinematics approach, a study of the position of the cylinders for greater range of motion and a workspace analysis is achieved. The platform makes use of a feedback controller to reduce the total motion of the landing platform. Using the robotic operating system (ROS) and Gazebo to emulate wave motions and represent the physical model and actuator system, the platform control system was successfully validated.

2023

A CPU-FPGA Holistic Source-To-Source Compilation Approach for Partitioning and Optimizing C/C plus plus Applications

Autores
Santos, T; Bispo, J; Cardoso, JMP;

Publicação
2023 32ND INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, PACT

Abstract
A common approach for improving performance uses FPGAs to accelerate critical code regions, which often involves two processes: hardware/software partitioning, which identifies regions to offload to the FPGA; and optimizing those regions (e.g., through HLS directives). As both processes are separate and usually applied in sequence, the interplay between them is unnatural, and it is unclear how the choices made in one step can benefit the choices made in the other step. This paper presents our work-in-progress for combining partitioning and optimization into a single holistic process. First, our source-to-source compiler builds a task-based representation from the input application. Then, a greedy algorithm builds clusters of tasks and assigns each cluster to either hardware (FPGA) or software (CPU). The algorithm iteratively refines the clusters and offloading decisions by: a) minimizing the communication costs between clusters by assigning tasks that work with shared data to the same cluster; b) reducing the global execution time by applying code optimizations to the tasks in each cluster. We show the impact of our holistic approach to a motivating edge detection example and compare the results when applying partitioning and code optimizations as independent steps. The results show that a holistic partitioning can lead to a speedup of up to 28.7x when compared to a simple offloading of the application to an FPGA.

2023

Machine Learning and Principles and Practice of Knowledge Discovery in Databases

Autores
Koprinska, I; Mignone, P; Guidotti, R; Jaroszewicz, S; Fröning, H; Gullo, F; Ferreira, PM; Roqueiro, D; Ceddia, G; Nowaczyk, S; Gama, J; Ribeiro, R; Gavaldà, R; Masciari, E; Ras, Z; Ritacco, E; Naretto, F; Theissler, A; Biecek, P; Verbeke, W; Schiele, G; Pernkopf, F; Blott, M; Bordino, I; Danesi, IL; Ponti, G; Severini, L; Appice, A; Andresini, G; Medeiros, I; Graça, G; Cooper, L; Ghazaleh, N; Richiardi, J; Saldana, D; Sechidis, K; Canakoglu, A; Pido, S; Pinoli, P; Bifet, A; Pashami, S;

Publicação
Communications in Computer and Information Science

Abstract

2023

Determinantes da escolha Alimentar, Barreiras ao cumprimento da terapêutica Dietética e Auto-Eficácia Alimentar em Doentes Submetidos a cirurgia Bariátrica

Autores
Valado, Vanessa; Magalhães, Maria; Barc, Mariana; Folzi, Camilla; Poínhos, Rui; Bruno M P M Oliveira; Cri Obesidade; Correia, Flora;

Publicação

Abstract

  • 517
  • 4201