Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2023

Two-Stage Semantic Segmentation in Neural Networks

Autores
Silva, DTE; Cruz, R; Goncalves, T; Carneiro, D;

Publicação
FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022

Abstract
Semantic segmentation consists of classifying each pixel according to a set of classes. This process is particularly slow for high-resolution images, which are present in many applications, ranging from biomedicine to the automotive industry. In this work, we propose an algorithm targeted to segment high-resolution images based on two stages. During stage 1, a lower-resolution interpolation of the image is the input of a first neural network, whose low-resolution output is resized to the original resolution. Then, in stage 2, the probabilities resulting from stage 1 are divided into contiguous patches, with less confident ones being collected and refined by a second neural network. The main novelty of this algorithm is the aggregation of the low-resolution result from stage 1 with the high-resolution patches from stage 2. We propose the U-Net architecture segmentation, evaluated in six databases. Our method shows similar results to the baseline regarding the Dice coefficient, with fewer arithmetic operations.

2023

Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

Autores
Pinto, JR;

Publicação
CoRR

Abstract

2023

A Study on Hyperparameters Configurations for an Efficient Human Activity Recognition System

Autores
Ferreira, PJS; Mendes-Moreira, J; Cardoso, JMP;

Publicação
PROCEEDINGS OF THE 8TH INTERNATIONAL WORKSHOP ON SENSOR-BASED ACTIVITY RECOGNITION AND ARTIFICIAL INTELLIGENCE, IWOAR 2023

Abstract
Human Activity Recognition (HAR) has been a popular research field due to the widespread of devices with sensors and computational power (e.g., smartphones and smartwatches). Applications for HAR systems have been extensively researched in recent literature, mainly due to the benefits of improving quality of life in areas like health and fitness monitoring. However, since persons have different motion patterns when performing physical activities, a HAR system would need to adapt to the characteristics of the user in order to maintain or improve accuracy. Mobile devices, such as smartphones, used to implement HAR systems, have limited resources (e.g., battery life). They also have difficulty adapting to the device's constraints to work efficiently for long periods. In this work, we present a kNN-based HAR system and an extensive study of the influence of hyperparameters (window size, overlap, distance function, and the value of k) and parameters (sampling frequency) on the system accuracy, energy consumption, and response time. We also study how hyperparameter configurations affect the model's performance for the users and the activities. Experimental results show that adapting the hyperparameters makes it possible to adjust the system's behavior to the user, the device, and the target service. These results motivate the development of a HAR system capable of automatically adapting the hyperparameters for the user, the device, and the service.

2023

Discrete Representation of Photovoltaic Modules

Autores
Massaranduba, AB; Coelho, B; Machado, E; Silva, E; Pinto, A;

Publicação
IEEE Latin America Transactions

Abstract

2023

Measuring Latency-Accuracy Trade-Offs in Convolutional Neural Networks

Autores
Tse, A; Oliveira, L; Vinagre, J;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I

Abstract
Several systems that employ machine learning models are subject to strict latency requirements. Fraud detection systems, transportation control systems, network traffic analysis and footwear manufacturing processes are a few examples. These requirements are imposed at inference time, when the model is queried. However, it is not trivial how to adjust model architecture and hyperparameters in order to obtain a good trade-off between predictive ability and inference time. This paper provides a contribution in this direction by presenting a study of how different architectural and hyperparameter choices affect the inference time of a Convolutional Neural Network for network traffic analysis. Our case study focus on a model for traffic correlation attacks to the Tor network, that requires the correlation of a large volume of network flows in a short amount of time. Our findings suggest that hyperparameters related to convolution operations-such as stride, and the number of filters-and the reduction of convolution and max-pooling layers can substantially reduce inference time, often with a relatively small cost in predictive performance.

2023

Internal Benchmarking for Efficiency Evaluations Using Data Envelopment Analysis: A Review of Applications and Directions for Future Research

Autores
Piran, FS; Camanho, S; Silva, MC; Lacerda, DP;

Publicação
Lecture Notes in Economics and Mathematical Systems

Abstract

  • 505
  • 4201