Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Information bottleneck with input sampling for attribution

Autores
Oliveira Coelho, BF; Cardoso, JS;

Publicação
Neurocomputing

Abstract
In order to facilitate the adoption of deep learning in areas where decisions are of critical importance, understanding the model's internal workings is paramount. Nevertheless, since most models are considered black boxes, this task is usually not trivial, especially when the user does not have access to the network's intermediate outputs. In this paper, we propose IBISA, a model-agnostic attribution method that reaches state-of-the-art performance by optimizing sampling masks using the Information Bottleneck Principle. Our method improves on the previously known RISE and IBA techniques by placing the bottleneck right after the image input without complex formulations to estimate the mutual information. The method also requires only twenty forward passes and ten backward passes through the network, which is significantly faster than RISE, which needs at least 4000 forward passes. We evaluated IBISA using a VGG-16 and a ResNET-50 model, showing that our method produces explanations comparable or superior to IBA, RISE, and Grad-CAM but much more efficiently. © 2025 The Authors

2025

Exploring image and skeleton-based action recognition approaches for clinical in-bed classification of simulated epileptic seizure movements

Autores
Karácsony, T; Fearns, N; Birk, D; Trapp, SD; Ernst, K; Vollmar, C; Rémi, J; Jeni, LA; De la Torre, F; Cunha, JPS;

Publicação
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
Epileptic seizure classification based on seizure semiology requires automated, quantitative approaches to support the diagnosis of epilepsy, which affects 1 % of the world's population. Current approaches address the problem on a seizure level, neglecting the detailed evaluation of the classification of the underlying action features, also known as Movements of Interest (MOIs), which are critical for epileptologists in determining their classifications. Moreover, it hinders objective comparison of these approaches and attribution of performance differences due to datasets, intra-dataset MOI distribution, or architecture variations. Objective evaluation of action recognition techniques is crucial, with MOIs serving as foundational elements of semiology for clinical in-bed applications to facilitate epileptic seizure classification. However, until now, there were no MOI datasets available nor benchmarks comparing different action recognition approaches for this clinical problem. Therefore, as a pilot, we introduced a novel, simulated seizure semiology dataset carried out by 8 experienced epileptologists in an EMU bed, consisting of 7 MOI classes. We compare several computer vision methods for MOI classification, two image-based (I3D and Uniformerv2), and two skeleton-based (ST-GCN++ and PoseC3D) action recognition approaches. This study emphasizes the advantages of a 2-stage skeleton-based action recognition approach in a transfer learning setting (4 classes) and the multi-scale challenge of MOI classification (7 classes), advocating for the integration of skeleton-based methods with hand gesture recognition technologies in the future. The study's controlled MOI simulation dataset provides us with the opportunity to advance the development of automated epileptic seizure classification systems, paving the way for enhancing their performance and having the potential to contribute to improved patient care.

2025

Advancing automated mineral identification through LIBS imaging for lithium-bearing mineral species

Autores
Capela, D; Lopes, T; Dias, F; Ferreira, MFS; Teixeira, J; Lima, A; Jorge, PAS; Silva, NA; Guimaraes, D;

Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY

Abstract
Mineral identification is a challenging task in geological sciences, which often implies multiple analyses of the physical and chemical properties of the samples for an accurate result. This task is particularly critical for the mining industry, where proper and fast mineral identification may translate into major efficiency and performance gains, such as in the case of the lithium mining industry. In this study, a mineral identification algorithm optimized for analyzing lithium-bearing samples using Laser-induced breakdown spectroscopy (LIBS) imaging, is put to the test with a set of representative samples. The algorithm incorporates advanced spectral processing techniques-baseline removal, Gaussian filtering, and data normalization-alongside unsupervised clustering to generate interpretable classification maps and auxiliary charts. These enhancements facilitate rapid and precise labelling of mineral compositions, significantly improving the interpretability and interactivity of the user interface. Extensive testing on diverse mineral samples with varying complexities confirmed the algorithm's robustness and broad applicability. Challenges related to sample granulometry and LIBS resolution were identified, suggesting future directions for optimizing system resolution to enhance classification accuracy in complex mineral matrices. The integration of this advanced algorithm with LIBS technology holds the potential to accelerate the mineral evaluation, paving the way for more efficient and sustainable mineral exploration.

2025

A Multimodal Perception System for Precise Landing of UAVs in Offshore Environments

Autores
Claro, RM; Neves, FSP; Pinto, AMG;

Publicação
JOURNAL OF FIELD ROBOTICS

Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations.

2025

Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review

Autores
Santos, CS; Amorim-Lopes, M;

Publicação
BMC MEDICAL RESEARCH METHODOLOGY

Abstract
Background This scoping review systematically maps externally validated machine learning (ML)-based models in cancer patient care, quantifying their performance, and clinical utility, and examining relationships between models, cancer types, and clinical decisions. By synthesizing evidence, this study identifies, strengths, limitations, and areas requiring further research. Methods The review followed the Joanna Briggs Institute's methodology, Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines, and the Population, Concept, and Context mnemonic. Searches were conducted across Embase, IEEE Xplore, PubMed, Scopus, and Web of Science (January 2014-September 2022), targeting English-language quantitative studies in Q1 journals (SciMago Journal and Country Ranking > 1) that used ML to evaluate clinical outcomes for human cancer patients with commonly available data. Eligible models required external validation, clinical utility assessment, and performance metric reporting. Studies involving genetics, synthetic patients, plants, or animals were excluded. Results were presented in tabular, graphical, and descriptive form. Results From 4023 deduplicated abstracts and 636 full-text reviews, 56 studies (2018-2022) met the inclusion criteria, covering diverse cancer types and applications. Convolutional neural networks were most prevalent, demonstrating high performance, followed by gradient- and decision tree-based algorithms. Other algorithms, though underrepresented, showed promise. Lung and digestive system cancers were most frequently studied, focusing on diagnosis and outcome predictions. Most studies were retrospective and multi-institutional, primarily using image-based data, followed by text-based and hybrid approaches. Clinical utility assessments involved 499 clinicians and 12 tools, indicating improved clinician performance with AI assistance and superior performance to standard clinical systems. Discussion Interest in ML-based clinical decision-making has grown in recent years alongside increased multi-institutional collaboration. However, small sample sizes likely impacted data quality and generalizability. Persistent challenges include limited international validation across ethnicities, inconsistent data sharing, disparities in validation metrics, and insufficient calibration reporting, hindering model comparison reliability.

2025

Discovering user groups of active modes of transport in urban centers using clustering methods

Autores
Felicio, S; Hora, J; Ferreira, MC; Sobral, T; Camacho, R; Galvao, T;

Publicação
JOURNAL OF TRANSPORT & HEALTH

Abstract
Introduction: Urban centers face increasing congestion and pollution due to population growth driven by jobs, education, and entertainment. Promoting active modes like walking and cycling offers healthier and less polluting alternatives. Understanding perceptions of comfort (green areas, commercial areas, crowd density, noise, thermal sensation, air quality, allergenics), safety and security (street illumination, traffic volume, surveillance, visual appearance, and speed limits) are crucial for encouraging active modes adoption. This study categorizes user groups based on these indicators, supporting policymakers in the development of targeted strategies. Methods: We developed a questionnaire to support our empirical study and collected 653 responses. We have analyzed the data using clustering methods such as Affinity Propagation, BIRCH, Bisecting K-means, HAC, K-means, Mini-Batch K-means, and Spectral clustering. The best performing method (K-means) was used to identify the user groups while a random forest model evaluated the relative importance of indicators for each group. Results: The study identified five user groups based on urban mobility indicators for safety and security, comfort, and distance and time. Conclusions: These groups, distinguished by sociodemographic features, include: Street Aesthetes (young men valuing visual appeal), Safety Seekers (employed men prioritizing speed limits), Working Guardians (employed men focused on surveillance and green spaces), Urban Explorers (young women valuing air quality and low traffic), and Comfort Connoisseurs (employed women prioritizing noise reduction and aesthetics).

  • 43
  • 4212