2023
Autores
Correia, A; Guimaraes, D; Paredes, H; Fonseca, B; Paulino, D; Trigo, L; Brazdil, P; Schneider, D; Grover, A; Jameel, S;
Publicação
IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS
Abstract
Visualizing and examining the intellectual landscape and evolution of scientific communities to support collaboration is crucial for multiple research purposes. In some cases, measuring similarities and matching patterns between research publication document sets can help to identify people with similar interests for building research collaboration networks and university-industry linkages. The premise of this work is assessing feasibility for resolving ambiguous cases in similarity detection to determine authorship with natural language processing (NLP) techniques so that crowdsourcing is applied only in instances that require human judgment. Using an NLP-crowdsourcing convergence strategy, we can reduce the costs of microtask crowdsourcing while saving time and maintaining disambiguation accuracy over large datasets. This article contributes a next-gen crowd-artificial intelligence framework that used an ensemble of term frequency-inverse document frequency and bidirectional encoder representation from transformers to obtain similarity rankings for pairs of scientific documents. A sequence of content-based similarity tasks was created using a crowd-powered interface for solving disambiguation problems. Our experimental results suggest that an adaptive NLP-crowdsourcing hybrid framework has advantages for inter-researcher similarity detection tasks where fully automatic algorithms provide unsatisfactory results, with the goal of helping researchers discover potential collaborators using data-driven approaches.
2023
Autores
Anes, H; Pinto, T; Lima, C; Nogueira, P; Reis, A;
Publicação
Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference, Guimaraes, Portugal, 12-14 July 2023.
Abstract
Over the years, industrial evolution has proved to be a complex process, since there are several aspects that need to be considered to achieve highly functional processes and differentiated quality products. To date, four industrial revolutions have been implemented. Thus, the paradigm of Industry 4.0 (I4.0) was born, a concept that aims to improve the efficiency, productivity, automation, and safety of industrial processes, but which also considers the operator’s relevance and centrality in these processes. Besides these four revolutions one more concept is emerging, called Industry 5.0 (I5.0). In recent years, and with the advance of scientific research, the implementation of wearables has proven to be the ideal solution to move towards the digitisation of Industrial sector. In this sense, the aim of this work is to provide a systematic review on the currently available knowledge about wearable technology and its applicability within I4.0. Through these technologies, both processes and operators can be monitored in real time, actively contributing to the identification of limitations and to the implementation of improvements. On the other hand, studies on the acceptance of these devices have shown a certain apprehension by users regarding the security and privacy of collected data. Therefore, studies should be conducted to analyse in depth these limitations, to raise users’ confidence and contribute, in a broader perspective, to the success of industrial processes. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Autores
Viera, A; Pascoal, PG; Rech, C;
Publicação
COBEP 2023 - 17th Brazilian Power Electronics Conference and SPEC 2023 - 8th IEEE Southern Power Electronics Conference, Proceedings
Abstract
Technologies related to the transportation electrification have been gaining attention in recent years. One technology that stands out is wireless charging, which still presents numerous challenges in terms of design and optimization of parameters. This article proposes a design methodology for optimizing the performance of an inductive power transfer (IPT) for wireless charging of electric vehicles, taking into account operating limits. The proposed methodology uses a PSO (Particle Swarm Optimization) algorithm to find the design variables that maximize the eficiency. The methodology and the development of a 3.6 kW experimental setup are presented, resulting in a power transfer efficiency of 89.4 %. © 2023 IEEE.
2023
Autores
Silva H.; Moreno T.; Almeida A.; Soares A.L.; Azevedo A.;
Publicação
Lecture Notes in Mechanical Engineering
Abstract
Recently, we have been observing a significant evolution in products, machines, and manufacturing processes, towards a more digital and interoperable reality. In this sense, the power transformers sector has also been evolving to develop smart transformers for the future, capable of providing the digital capabilities to leverage new services and features that follow its entire life cycle, from the design and manufacturing to the use and dismantling/recycling. In this sense, this paper aims to present and demonstrate how an innovative digital twin platform can be used in a secure and trustable way for the enhancement of the power transformers’ performance and potential lifespan, enabling, at the same time, the promotion of new business models. A real use case is also presented to demonstrate the applicability of Asset Administration Shells (AAS) for power transformer life cycle management, as well as the use of the International Data Spaces (IDS) for the secure and trustable horizontal interoperability along with the different actors of the value chain, from the manufacturers to the power network and maintenance services companies.
2023
Autores
Pires A.; Dias A.; Rodrigues P.; Silva P.; Santos T.; Oliveira A.; Ferreira A.; Almeida J.; Martins A.; Chaminé H.I.; Silva E.;
Publicação
Advances in Science, Technology and Innovation
Abstract
This work addresses reconstructing an ancient mining site in three-dimensional (3D) modelling with robotic systems, processing the information from two visible spectrum cameras. The developed solution, GeoTec System, was validated in an underground environment in the Monastery of Tibães (Braga, NW Portugal). This study was developed under the MineHeritage project's scope, aiming to attain society on the importance of raw materials across a historical approach. The outputs acquired from the datasets developed in a successful 3D reconstruction of the main gallery and secondary tunnels of the Aveleiras mine in Tibães. However, the investigation is still ongoing to contribute to applying 3D reconstruction technologies, GIS-based mapping and geovisualization techniques in the underground heritage environment.
2023
Autores
Barbosa, M; Schwabe, P;
Publicação
IACR Cryptol. ePrint Arch.
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.