2023
Autores
Ponte, L; Koch, I; Lopes, CT;
Publicação
LEVERAGING GENERATIVE INTELLIGENCE IN DIGITAL LIBRARIES: TOWARDS HUMAN-MACHINE COLLABORATION, ICADL 2023, PT II
Abstract
An institution must understand its users to provide quality services, and archives are no exception. Over the years, archives have adapted to the technological world, and their users have also changed. To understand archive users' characteristics and motivations, we conducted a study in the context of the Portuguese Archives. For this purpose, we analysed a survey and complemented this analysis with information gathered in interviews with archivists. Based on the most frequent reasons for visiting the archives, we defined six main archival profiles (genealogical research, historical research, legal purposes, academic work, institutional purposes and publication purposes), later characterised using the results of the previous analysis. For each profile, we created a persona for a more visual and realistic representation of users.
2023
Autores
Zanella, F; Vaz, CB;
Publicação
SN Computer Science
Abstract
This study proposes a framework for short-term production planning of a Portuguese company operating as a tier 2 supplier in the automotive sector. The framework is intended to support the decision-making process regarding a single progressive hydraulic press, which is used to manufacture cold-stamped parts for exhaust systems. The framework consists of two sequential levels: (1) a Mixed-Integer Linear Programming (MILP) model to determine the optimal production quantities per week while minimizing the total cost; (2) a dynamic production sequencing rule for scheduling operations on the hydraulic press. The two levels are combined and implemented in Excel, where the MILP model is solved using the Solver add-in, and the second level uses the optimal production quantities as inputs to determine the production sequence using a dynamic priority rule. To validate the framework, a proposed optimal plan was compared to a real plan executed by the company, and it was found that the framework could save up to 22.1% of the total cost observed in reality while still satisfying demand. To address uncertainties, the framework requires a rolling weekly planning horizon. © 2023, The Author(s).
2023
Autores
Claro, RM; Silva, DB; Pinto, AM;
Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS
Abstract
For Vertical Take-Off and Landing Unmanned Aerial Vehicles (VTOL UAVs) to operate autonomously and effectively, it is mandatory to endow them with precise landing abilities. The UAV has to be able to detect the landing target and to perform the landing maneuver without compromising its own safety and the integrity of its surroundings. However, current UAVs do not present the required robustness and reliability for precise landing in highly demanding scenarios, particularly due to their inadequacy to perform accordingly under challenging lighting and weather conditions, including in day and night operations.This work proposes a multimodal fiducial marker, named ArTuga (Augmented Reality Tag for Unmanned vision-Guided Aircraft), capable of being detected by an heterogeneous perception system for accurate and precise landing in challenging environments and daylight conditions. This research combines photometric and radiometric information by proposing a real-time multimodal fusion technique that ensures a robust and reliable detection of the landing target in severe environments.Experimental results using a real multicopter UAV show that the system was able to detect the proposed marker in adverse conditions (such as at different heights, with intense sunlight and in dark environments). The obtained average accuracy for position estimation at 1 m height was of 0.0060 m with a standard deviation of 0.0003 m. Precise landing tests obtained an average deviation of 0.027 m from the proposed marker, with a standard deviation of 0.026 m. These results demonstrate the relevance of the proposed system for the precise landing in adverse conditions, such as in day and night operations with harsh weather conditions.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2023
Autores
Aazami, R; Iranmehr, H; Tavoosi, J; Mohammadzadeh, A; Sabzalian, MH; Javadi, MS;
Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
This study presents a planning model for utilizing emergency transmission capacity in the power system reserve market with renewable energy sources. To this end, first, the effects of the operation of a transmission line at higher power than rated power are described. The lifetime reduction of transmission lines caused by operation under these conditions is then measured, and finally, the price is determined based on the rate of lifetime reduction. This surplus capacity is then entered into a two-stage model of the energy and reserve market as a function of price offer, while also taking renewable energy sources into account. The numerical results of a 6-bus network indicates that the introduction of renewable energy sources reduced energy costs while increasing reserve market costs due to uncertainty. Despite the emergency capacity, such costs are reduced due to the network's utilization of low-cost resources.
2023
Autores
Sousa, H; Jorge, A; Campos, R;
Publicação
PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023
Abstract
Temporal information extraction (TIE) has attracted a great deal of interest over the last two decades. Such endeavors have led to the development of a significant number of datasets. Despite its benefits, having access to a large volume of corpora makes it difficult to benchmark TIE systems. On the one hand, different datasets have different annotation schemes, which hinders the comparison between competitors across different corpora. On the other hand, the fact that each corpus is disseminated in a different format requires a considerable engineering effort for a researcher/practitioner to develop parsers for all of them. These constraints force researchers to select a limited amount of datasets to evaluate their systems which consequently limits the comparability of the systems. Yet another obstacle to the comparability of TIE systems is the evaluation metric employed. While most research works adopt traditional metrics such as precision, recall, and..1, a few others prefer temporal awareness - a metric tailored to be more comprehensive on the evaluation of temporal systems. Although the reason for the absence of temporal awareness in the evaluation of most systems is not clear, one of the factors that certainly weighs on this decision is the need to implement the temporal closure algorithm, which is neither straightforward to implement nor easily available. All in all, these problems have limited the fair comparison between approaches and consequently, the development of TIE systems. To mitigate these problems, we have developed tieval, a Python library that provides a concise interface for importing different corpora and is equipped with domain-specific operations that facilitate system evaluation. In this paper, we present the first public release of tieval and highlight its most relevant features. The library is available as open source, under MIT License, at PyPI1 and GitHub(2).
2023
Autores
Esteves, T; Macedo, R; Oliveira, R; Paulo, J;
Publicação
2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W
Abstract
We present DIO, a generic tool for observing inefficient and erroneous I/O interactions between applications and in-kernel storage systems that lead to performance, dependability, and correctness issues. DIO facilitates the analysis and enables near real-time visualization of complex I/O patterns for data-intensive applications generating millions of storage requests. This is achieved by non-intrusively intercepting system calls, enriching collected data with relevant context, and providing timely analysis and visualization for traced events. We demonstrate its usefulness by analyzing two production-level applications. Results show that DIO enables diagnosing resource contention in multi-threaded I/O that leads to high tail latency and erroneous file accesses that cause data loss.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.