Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Automatic Visual Inspection for Industrial Application

Autores
Ribeiro, AG; Vilaça, L; Costa, C; da Costa, TS; Carvalho, PM;

Publicação
JOURNAL OF IMAGING

Abstract
Quality control represents a critical function in industrial environments, ensuring that manufactured products meet strict standards and remain free from defects. In highly regulated sectors such as the pharmaceutical industry, traditional manual inspection methods remain widely used. However, these are time-consuming and prone to human error, and they lack the reliability required for large-scale operations, highlighting the urgent need for automated solutions. This is crucial for industrial applications, where environments evolve and new defect types can arise unpredictably. This work proposes an automated visual defect detection system specifically designed for pharmaceutical bottles, with potential applicability in other manufacturing domains. Various methods were integrated to create robust tools capable of real-world deployment. A key strategy is the use of incremental learning, which enables machine learning models to incorporate new, unseen data without full retraining, thus enabling adaptation to new defects as they appear, allowing models to handle rare cases while maintaining stability and performance. The proposed solution incorporates a multi-view inspection setup to capture images from multiple angles, enhancing accuracy and robustness. Evaluations in real-world industrial conditions demonstrated high defect detection rates, confirming the effectiveness of the proposed approach.

2025

Histopathological Imaging Dataset for Oral Cancer Analysis: A Study with a Data Leakage Warning

Autores
Nogueira, DM; Gomes, EF;

Publicação
Proceedings of the 18th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2025 - Volume 1, Porto, Portugal, February 20-22, 2025.

Abstract

2025

PolyNarrative: A Multilingual, Multilabel, Multi-domain Dataset for Narrative Extraction from News Articles

Autores
Nikolaidis, N; Stefanovitch, N; Silvano, P; Dimitrov, D; Yangarber, R; Guimaraes, N; Sartori, E; Androutsopoulos, I; Nakov, P; Da San Martino, G; Piskorski, J;

Publicação
PROCEEDINGS OF THE 63RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS

Abstract
We present PolyNarrative, a new multilingual dataset of news articles, annotated for narratives. Narratives are overt or implicit claims, recurring across articles and languages, promoting a specific interpretation or viewpoint on an ongoing topic, often propagating mis/disinformation. We developed two-level taxonomies with coarse- and fine-grained narrative labels for two domains: (i) climate change and (ii) the military conflict between Ukraine and Russia. We collected news articles in four languages (Bulgarian, English, Portuguese, and Russian) related to the two domains and manually annotated them at the paragraph level. We make the dataset publicly available, along with experimental results of several strong baselines that assign narrative labels to news articles at the paragraph or the document level. We believe that this dataset will foster research in narrative detection and enable new research directions towards more multi-domain and highly granular narrative related tasks.

2025

Semantic and Spatial Sound-Object Recognition for Assistive Navigation

Autores
Gea, Daniel; Bernardes, Gilberto;

Publicação

Abstract
Building on theories of human sound perception and spatial cognition, this paper introduces a sonification method that facilitates navigation by auditory cues. These cues help users recognize objects and key urban architectural elements, encoding their semantic and spatial properties using non-speech audio signals. The study reviews advances in object detection and sonification methodologies, proposing a novel approach that maps semantic properties (i.e., material, width, interaction level) to timbre, pitch, and gain modulation and spatial properties (i.e., distance, position, elevation) to gain, panning, and melodic sequences. We adopt a three-phase methodology to validate our method. First, we selected sounds to represent the object’s materials based on the acoustic properties of crowdsourced annotated samples. Second, we conducted an online perceptual experiment to evaluate intuitive mappings between sounds and object semantic attributes. Finally, in-person navigation experiments were conducted in virtual reality to assess semantic and spatial recognition. The results demonstrate a notable perceptual differentiation between materials, with a global accuracy of .69 ± .13 and a mean navigation accuracy of .73 ± .16, highlighting the method’s effectiveness. Furthermore, the results suggest a need for improved associations between sounds and objects and reveal demographic factors that are influential in the perception of sounds.

2025

Promoting sustainable and personalized travel behaviors while preserving data privacy

Autores
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;

Publicação
Transportation Engineering

Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.

2025

Estimating Completeness of Consensus Models: Geometrical and Distributional Approaches

Autores
Strecht, P; Mendes-Moreira, J; Soares, C;

Publicação
MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2024, PT I

Abstract
In many organizations with a distributed operation, not only is data collection distributed, but models are also developed and deployed separately. Understanding the combined knowledge of all the local models may be important and challenging, especially in the case of a large number of models. The automated development of consensus models, which aggregate multiple models into a single one, involves several challenges, including fidelity (ensuring that aggregation does not penalize the predictive performance severely) and completeness (ensuring that the consensus model covers the same space as the local models). In this paper, we address the latter, proposing two measures for geometrical and distributional completeness. The first quantifies the proportion of the decision space that is covered by a model, while the second takes into account the concentration of the data that is covered by the model. The use of these measures is illustrated in a real-world example of academic management, as well as four publicly available datasets. The results indicate that distributional completeness in the deployed models is consistently higher than geometrical completeness. Although consensus models tend to be geometrically incomplete, distributional completeness reveals that they cover the regions of the decision space with a higher concentration of data.

  • 33
  • 4340