Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2014

An Optimization based on Simulation Approach to the Patient Admission Scheduling Problem: Diagnostic Imaging Department Case Study

Autores
Granja, C; Almada Lobo, B; Janela, F; Seabra, J; Mendes, A;

Publicação
JOURNAL OF DIGITAL IMAGING

Abstract
The growing influx of patients in healthcare providers is the result of an aging population and emerging self-consciousness about health. In order to guarantee the welfare of all the healthcare stakeholders, it is mandatory to implement methodologies that optimize the healthcare providers' efficiency while increasing patient throughput and reducing patient's total waiting time. This paper presents a case study of a conventional radiology workflow analysis in a Portuguese healthcare provider. Modeling tools were applied to define the existing workflow. Re-engineered workflows were analyzed using the developed simulation tool. The integration of modeling and simulation tools allowed the identification of system bottlenecks. The new workflow of an imaging department entails a reduction of 41 % of the total completion time.

2014

Active Mining of Parallel Video Streams

Autores
Khoshrou, Samaneh; Cardoso, JaimeS.; Teixeira, LuisFilipe;

Publicação
CoRR

Abstract

2014

Selective feeding by Anodonta cygnea (Linnaeus, 1771): The effects of seasonal changes and nutritional demands

Autores
Lopes Lima, M; Lima, P; Hinzmann, M; Rocha, A; Machado, J;

Publicação
LIMNOLOGICA

Abstract
Many animal species, during their life cycles, can select specific food elements that meet the special and unique metabolic needs of crucial stages such as growth, gonad maturation or larvae production and brooding. The objective of this study was to analyze the seasonal phytoplankton composition in the stomach contents of the freshwater mussel Anodonta cygnea in order to determine whether it was capable of selecting food seasonally and which were its preferences. Specimens and water samples were collected monthly from Barrinha de Mira lagoon in the northwest of Portugal during one year. From the microalgae composition found in the water and stomach content samples, Chlorophyta presented a clear predominance, followed by Cryptophyta and Bacillariophyta in water samples, and Bacillariophyta and Cyanobacteria in stomach contents. Although mussels ingested algae in a pattern very similar to its abundance in the natural habitat, in some periods specific groups were preferred even if they were present in very low concentrations in the environment. Thus, these animals are capable of selecting food by its specific characteristics and this selectivity may be associated with its physiological cycle, mainly with the reproductive cycle. Namely, the large relative abundance (ratio stomach/environment) peak of blue green algae that co-occur with gamete development covering two other smaller peaks: one of Bacillariophyta that co-occurs with gametogenesis restart and the other of Chlorophyta at the end. In addition, a significant peak of Cryptophyta co-occurs with growth and glochidia brooding periods.

2014

"Glucose-at-a-glance": New method to visualize the dynamics of continuous glucose monitoring data

Autores
Henriques, T; Munshi, MN; Segal, AR; Costa, MD; Goldberger, AL;

Publicação
Journal of Diabetes Science and Technology

Abstract
The standard continuous glucose monitoring (CGM) output provides multiple graphical and numerical summaries. A useful adjunct would be a visualization tool that facilitates immediate assessment of both long- and short-term variability. We developed an algorithm based on the mathematical method of delay maps to display CGM signals in which the glucose value at time ti is plotted against its value at time ti+1. The data points are then color-coded based on their frequency of occurrence (density). Examples of this new visualization tool, along with the accompanying time series, are presented for selected patients with type 2 diabetes and non-diabetic controls over the age of 70 years. The method reveals differences in the structure of the glucose variability between subjects with a similar range of glucose values. We also observe that patients with comparable hemoglobin A1c (HbA1c) values may have very different delay maps, consistent with marked differences in the dynamics of glucose control. These differences are not accounted by the amplitude of the fluctuations. Furthermore, the delay maps allow for rapid recognition of hypo- and hyperglycemic periods over the full duration of monitoring or any subinterval. The glucose-at-a-glance visualization tool, based on colorized delay maps, provides a way to quickly assess the complex data acquired by CGM systems. This method yields dynamical information not contained in single summary statistics, such as HbA1c values, and may also serve as the basis for developing novel metrics of glycemic control. © 2014 Diabetes Technology Society.

2014

Omnidirectional Walking with a Compliant Inverted Pendulum Model

Autores
Abdolmaleki, A; Shafii, N; Reis, LP; Lau, N; Peters, J; Neumann, G;

Publicação
ADVANCES IN ARTIFICIAL INTELLIGENCE (IBERAMIA 2014)

Abstract
In this paper, we propose a novel omnidirectional walking engine that achieves energy efficient, human like, stable and fast walking. We augment the 3D inverted pendulum with a spring model to implement a height change in the robot's center of mass trajectory. This model is used as simplified model of the robot and the zero moment point (ZMP) criterion is used as the stability indicator. The presented walking engine consists of 5 main modules including the "next posture generator" module, the "foot trajectory generator" module, the "center of mass (CoM) trajectory generator" module, the "robot posture controller" module and "Inverse kinematics (IK) solver" module. The focus of the paper is the generation of the position of the next step and the CoM trajectory generation. For the trajectory generator, we extend the 3D-IPM with an undamped spring to implement height changes of the CoM. With this model we can implement active compliance for the robot's gait, resulting in a more energy efficient movement. We present a modified method for solving ZMP equations which derivation is based on the new proposed model for omnidirectional walking. The walk engine is tested on simulated and a real NAO robot. We use policy search to optimize the parameters of the walking engines for the standard 3D-LIPM and our proposed model to compare the performance of both models each with their optimal parameters. We optimize the policy parameters in terms of energy efficiency for a fixed walking speed. The experimental results show the advantages of our proposed model over 3D-LIPM.

2014

Mixed biomass pellets for thermal energy production: A review of combustion models

Autores
Nunes, LJR; Matias, JCO; Catalao, JPS;

Publicação
APPLIED ENERGY

Abstract
The need to generate thermal and electrical energy, global warming caused by increased emissions of greenhouse gases, rising fossil fuel prices and demand for energy independence, have created a new industry focused on energy production through the use of renewable sources. Among the different options, biomass is the third most important source for obtaining electricity, and is the main source for the production of thermal energy. However, problems related to the low density of the different types of biomass, and the difficulty of transportation and storage, have led to the need to find solid fuels with higher density and greater hardness, known as pellets and briquettes. This paper seeks to develop an analysis of the current situation of the production of pellets, mainly with mixed biomass types, and the possible uses they have, with the main emphasis on the review of different combustion processes.

  • 2749
  • 4198