2025
Autores
Martins, G; Nutonen, K; Costa, P; Kuts, V; Otto, T; Sousa, A; Petry, R;
Publicação
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC
Abstract
Digital twins enable real-time modeling, simulation, and monitoring of complex systems, driving advancements in automation, robotics, and industrial applications. This study presents a large-scale digital twin-testing facility for evaluating mobile robots and pilot robotic systems in a research laboratory environment. The platform integrates high-fidelity physical and environmental models, providing a controlled yet dynamic setting for analyzing robotic behavior. A key feature of the system is its comprehensive data collection framework, capturing critical parameters such as position, orientation, and velocity, which can be leveraged for machine learning, performance optimization, and decision-making. The facility also supports the simulation of discrete operational systems, using predictive modeling to bridge informational gaps when real-time data updates are unavailable. The digital twin was validated through a matrix manufacturing system simulation, with an Augmented Reality (AR) interface on the HoloLens 2 to overlay digital information onto mobile platform controllers, enhancing situational awareness. The main contributions include a digital twin framework for deploying data-driven robotic systems and three key AR/VR integration optimization methods. Demonstrated in a laboratory setting, the system is a versatile tool for research and industrial applications, fostering insights into robotic automation and digital twin scalability while reducing costs and risks associated with real-world testing. © 2025 IEEE.
2025
Autores
Couto, B; Petry, R; Mendes, A; Silva, F;
Publicação
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC
Abstract
The growing reliance on e-commerce and the demand for efficient intralogistics operations have increased the need for automation, while labour shortages continue to pose significant challenges. When combined with the inherent risks of forklift operation, this circumstance prompted businesses to look for robotic solutions for intralogistics tasks. However, robots are still limited when they come across situations that are outside of their programming scope and often need assistance from humans. To achieve the long-term goal of enhancing intralogistics operation, we propose the development of a virtual reality-based teleoperation system that allows remote operation of robot forklifts with minimal latency. Considering the specificities of the teleoperation process and network dynamics, we conduct detailed modelling to analyse latency factors, optimise system performance, and ensure a seamless user experience. Experimental results on a mobile robot have shown that the proposed teleoperation system achieves an average glass-to-glass latency of 368 ms, with capturing latency contributing to approximately 60% of the total delay. The results also indicate that network os-cillations significantly impact image quality and user experience, emphasising the importance of a stable network infrastructure. © 2025 IEEE.
2025
Autores
Almeida, F; Okon, E;
Publicação
African Journal of Economic and Management Studies
Abstract
2025
Autores
Nunes, JD; Montezuma, D; Oliveira, D; Pereira, T; Zlobec, I; Pinto, IM; Cardoso, JS;
Publicação
SENSORS
Abstract
Due to the high variability in Hematoxylin and Eosin (H&E)-stained Whole Slide Images (WSIs), hidden stratification, and batch effects, generalizing beyond the training distribution is one of the main challenges in Deep Learning (DL) for Computational Pathology (CPath). But although DL depends on large volumes of diverse and annotated data, it is common to have a significant number of annotated samples from one or multiple source distributions, and another partially annotated or unlabeled dataset representing a target distribution for which we want to generalize, the so-called Domain Adaptation (DA). In this work, we focus on the task of generalizing from a single source distribution to a target domain. As it is still not clear which domain adaptation strategy is best suited for CPath, we evaluate three different DA strategies, namely FixMatch, CycleGAN, and a self-supervised feature extractor, and show that DA is still a challenge in CPath.
2025
Autores
Oliveira, R; Pedras, S; Veiga, C; Moreira, L; Santarem, D; Guedes, D; Paredes, H; Silva, I;
Publicação
INFORMATICS FOR HEALTH & SOCIAL CARE
Abstract
This study presents the development and assessment of a mobile application - the WalkingPAD app - aimed at promoting adherence to physical exercise among patients with Peripheral Arterial Disease (PAD). The assessment of adherence, acceptability, and usability was performed using mixed methods. Thirty-eight patients participated in the study with a mean age of 63.4 years (SD = 6.8). Thirty patients used the application for three months, responded to a semi-structured interview, and completed a task test and the System Usability Scale (SUS, ranging from 0 to 100). The application's adherence rate was 73%. When patients were asked about their reasons for using the app, the main themes that emerged were motivation, self-monitoring, and support in fulfilling a commitment. The average SUS score was 82.82 (SD = 18.4), indicating high usability. An upcoming version of the WalkingPAD app is expected to redesign both tasks - opening the app and looking up the walking history - which were rated as the most difficult tasks to accomplish. The new version of the WalkingPAD app will incorporate participants' comments and suggestions to enhance usability for this population.
2025
Autores
Cao, Z; Pinto, AS; Bernardes, G;
Publicação
International Conference on Computer Supported Education, CSEDU - Proceedings
Abstract
Sound design plays an important role in serious games, influencing user experience and learning outcomes. However, deriving general principles and best practices remains challenging, as most literature relies on case-based studies in different application domains. Through a systematic review of the literature, 21 studies were analyzed to address two key questions: 1) what types of serious games and application domains incorporate sound design? and 2) what sound design strategies are implemented to enhance user experience and learning outcomes? The findings show that serious games have mainly focused on education, healthcare, and training, using sound to enhance motivation (50%), cognition (32%), and knowledge acquisition (18%). Furthermore, sound design strategies fulfill distinct roles: sound effects enhance feedback and engagement, background music influences motivation and cognitive processing, ambient sounds support navigation and emotional regulation, and dialogue facilitates knowledge acquisition. The findings highlight the need for further research to establish standardized sound design principles to optimize user experience and learning outcomes in serious games. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.