Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Metalmesh-based Reconfigurable Intelligent Surface for Wi-Fi 6E Applications

Autores
Inácio, SI; Pessoa, LM;

Publicação
2024 4TH URSI ATLANTIC RADIO SCIENCE MEETING, AT-RASC 2024

Abstract
This paper presents an optically transparent 2-bit unit-cell for reflective intelligent surface applications in Wi-Fi 6E. The unit-cell is based on a metalmesh and can be reconfigured electronically by adjusting the voltage applied to a varactor diode. The performance of the RIS is demonstrated through simulation, which shows that the results are in good agreement with the theoretical predictions.

2024

Virtual power plant optimal dispatch considering power-to-hydrogen systems

Autores
Rodrigues, L; Soares, T; Rezende, I; Fontoura, J; Miranda, V;

Publicação
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Abstract
Power-to-Hydrogen (P2H) clean systems have been increasingly adopted for Virtual Power Plant (VPP) to drive system decarbonization. However, current models for the joint operation of VPP and P2H often disregard the full impact on grid operation or hydrogen supply to multiple consumers. This paper contributes with a VPP operating model considering a full Alternating Current Optimal Power Flow (AC OPF) while integrating different paths for the use of green hydrogen, such as supplying hydrogen to a Combined Heat and Power (CHP), industry and local hydrogen consumers. The proposed framework is tested using a 37-bus distribution grid and the results illustrate the benefits that a P2H plant can bring to the VPP in economic, grid operation and environmental terms. An important conclusion is that depending on the prices of the different hydrogen services, the P2H plant can increase the levels of self-sufficiency and security of supply of the VPP, decrease the operating costs, and integrate more renewables.

2024

Phasing segmented telescopes via deep learning methods: application to a deployable CubeSat

Autores
Dumont, M; Correia, CM; Sauvage, JF; Schwartz, N; Gray, M; Cardoso, J;

Publicação
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION

Abstract
Capturing high-resolution imagery of the Earth's surface often calls for a telescope of considerable size, even from low Earth orbits (LEOs). A large aperture often requires large and expensive platforms. For instance, achieving a resolution of 1 m at visible wavelengths from LEO typically requires an aperture diameter of at least 30 cm. Additionally, ensuring high revisit times often prompts the use of multiple satellites. In light of these challenges, a small, segmented, deployable CubeSat telescope was recently proposed creating the additional need of phasing the telescope's mirrors. Phasing methods on compact platforms are constrained by the limited volume and power available, excluding solutions that rely on dedicated hardware or demand substantial computational resources. Neural networks (NNs) are known for their computationally efficient inference and reduced onboard requirements. Therefore, we developed a NN-based method to measure co-phasing errors inherent to a deployable telescope. The proposed technique demonstrates its ability to detect phasing errors at the targeted performance level [typically a wavefront error (WFE) below 15 nm RMS for a visible imager operating at the diffraction limit] using a point source. The robustness of the NN method is verified in presence of high-order aberrations or noise and the results are compared against existing state-of-the-art techniques. The developed NN model ensures its feasibility and provides arealistic pathway towards achieving diffraction-limited images. (c) 2024 Optica Publishing Group

2024

Offshore Wind Farm Black Start With Grid-Forming Control

Autores
Prakash, PH; Lopes, JP; Silva, B;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
This paper introduces a detailed procedure for executing a black start service from an offshore wind farm (OWF) through the integration of grid-forming (GFM) control. The proposed strategy involves exploiting a grid-forming battery energy storage system (BESS) to deliver black start service within an OWF equipped with grid-following wind turbines. Controller modelling, and operation methodology are explained. To illustrate the efficacy of the suggested control and operation principles, the study employs an OWF as a case study. Simulation analyses are conducted using the Matlab/Simulink software to demonstrate the viability of the presented strategy.

2024

Enhancing Grapevine Node Detection to Support Pruning Automation: Leveraging State-of-the-Art YOLO Detection Models for 2D Image Analysis

Autores
Oliveira, F; da Silva, DQ; Filipe, V; Pinho, TM; Cunha, M; Cunha, JB; dos Santos, FN;

Publicação
SENSORS

Abstract
Automating pruning tasks entails overcoming several challenges, encompassing not only robotic manipulation but also environment perception and detection. To achieve efficient pruning, robotic systems must accurately identify the correct cutting points. A possible method to define these points is to choose the cutting location based on the number of nodes present on the targeted cane. For this purpose, in grapevine pruning, it is required to correctly identify the nodes present on the primary canes of the grapevines. In this paper, a novel method of node detection in grapevines is proposed with four distinct state-of-the-art versions of the YOLO detection model: YOLOv7, YOLOv8, YOLOv9 and YOLOv10. These models were trained on a public dataset with images containing artificial backgrounds and afterwards validated on different cultivars of grapevines from two distinct Portuguese viticulture regions with cluttered backgrounds. This allowed us to evaluate the robustness of the algorithms on the detection of nodes in diverse environments, compare the performance of the YOLO models used, as well as create a publicly available dataset of grapevines obtained in Portuguese vineyards for node detection. Overall, all used models were capable of achieving correct node detection in images of grapevines from the three distinct datasets. Considering the trade-off between accuracy and inference speed, the YOLOv7 model demonstrated to be the most robust in detecting nodes in 2D images of grapevines, achieving F1-Score values between 70% and 86.5% with inference times of around 89 ms for an input size of 1280 x 1280 px. Considering these results, this work contributes with an efficient approach for real-time node detection for further implementation on an autonomous robotic pruning system.

2024

1-bit Graphene-based Reconfigurable Intelligent Surface Design in Ka-Band

Autores
Inácio, SI; Pessoa, LM;

Publicação
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP

Abstract
This paper presents a 1-bit graphene-based reflective reconfigurable intelligent surface (RIS), namely a reflectarray antenna, that operates in the Ka-band (27 - 31 GHz). The reflectarray unit-cell features a simple structure with one metal layer, a Rogers RT5880 substrate and a Graphene Sandwich Structure (GSS) on top. The GSS comprises two layers of graphene separated by a diaphragm paper and a thin PVC layer to enhance its durability. The reflectarray can ensure a 1-bit phase shift resolution, by alternating the bias voltage applied to the graphene. The unit-cell simulation shows that the losses are around 3 dB over the studied band for both unit-cell states. An equivalent circuit model is presented to facilitate the analysis and design of GSS-based unit-cells. The full-wave simulation results of a 32x32 reflectarray indicate a gain of 25 dBi for a steering angle of 10 deg., displaying a 1 dB gain bandwidth of 15%, confirming the promise of the graphene-based radiating elements.

  • 240
  • 4235