Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2017

Very high resolution aerial data to support multi-temporal precision agriculture information management

Autores
Padua, L; Adao, T; Hruska, J; Sousa, JJ; Peres, E; Morais, R; Sousa, A;

Publicação
CENTERIS 2017 - INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / PROJMAN 2017 - INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / HCIST 2017 - INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERI

Abstract
The usage of small-sized unmanned aerial systems (UAS) has increased in the last years, in many different areas, being agriculture and forestry those who benefit the most from this relatively new remote sensing platform. Leaf area index, canopy and plant volume are among the parameters that can be determined using the very high resolution aerial data obtained by sensors coupled in unmanned aerial vehicles (UAV). This remote sensing technology affords the possibility of monitoring the vegetative development, identifying different types of issues, enabling the application of the most appropriated treatments in the affected areas. In this paper, a methodology allowing to perform multi-temporal UAS-based data analysis obtained by different sensors is proposed. A case study in vineyards and chestnuts is used to prove the benefits of continuous crop monitoring in its management and productivity of agroforestry parcels/activities. (C) 2017 The Authors. Published by Elsevier B.V.

2017

Survey on advances on terrain based navigation for autonomous underwater vehicles

Autores
Melo, J; Matos, A;

Publicação
OCEAN ENGINEERING

Abstract
The autonomy of robotic underwater vehicles is dependent on the ability to perform long-term and long-range missions without need of human intervention. While current state-of-the-art underwater navigation techniques are able to provide sufficient levels of precision in positioning, they require the use of support vessels or acoustic beacons. This can pose limitations on the size of the survey area, but also on the whole cost of the operations. Terrain Based Navigation is a sensor-based navigation technique that bounds the error growth of dead reckoning using a map with terrain information, provided that there is enough terrain variability. An obvious advantage of Terrain Based Navigation is the fact that no external aiding signals or devices are required. Because of this unique feature, terrain navigation has the potential to dramatically improve the autonomy of Autonomous Underwater Vehicles (AUVs). This paper consists on a comprehensive survey on the recent developments for Terrain Based Navigation methods proposed for AUVs. The survey includes a brief introduction to the original Terrain Based Navigation formulations, as well as a description of the algorithms, and a list of the different implementation alternatives found in the literature. Additionally, and due to the relevance, Bathymetric SLAM techniques will also be discussed.

2017

Editorial

Autores
Pinho, LM;

Publicação
Ada User Journal

Abstract

2017

Evaluation of CGRA architecture for real-time processing of biological signals on wearable devices

Autores
Lopes, J; Sousa, D; Ferreira, JC;

Publicação
2017 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG)

Abstract
This paper describes the design and implementation of a coarse-grained reconfigurable array (CGRA) for low-power biological signal processing. It uses an use-case-driven approach which explores the application domain and gathers common requirements. The selected CGRA core architecture is implemented using a standard-cell flow (in a generic 90nm CMOS process), so that the CGRA can be totally or partially turned off by power gating. The selected CGRA design is evaluated for two use-cases using layout information and accurate node activity information. The resulting accelerator is capable of performing various signal processing tasks very efficiently, achieving an average power consumption of 19.9 pJ/cycle (or 1.99mW at 100 MHz). Static power consumption for less intensive tasks can be reduced by using only some sections of the CGRA while powering-off others.

2017

ECOAL Project-Delivering Solutions for Integrated Monitoring of Coal-Related Fires Supported on Optical Fiber Sensing Technology

Autores
Ribeiro, J; Viveiros, D; Ferreira, J; Lopez Gil, A; Dominguez Lopez, A; Martins, HF; Perez Herrera, R; Lopez Aldaba, A; Duarte, L; Pinto, A; Martin Lopez, S; Baierl, H; Jamier, R; Rougier, S; Auguste, JL; Teodoro, AC; Goncalves, JA; Esteban, O; Santos, JL; Roy, P; Lopez Amo, M; Gonzalez Herraez, M; Baptista, JM; Flores, D;

Publicação
APPLIED SCIENCES-BASEL

Abstract
The combustion of coal wastes resulting from mining is of particular environmental concern, and the importance of proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of the combustion temperature and emission levels of certain gases allows for the possibility of planning corrective actions to minimize their negative impact on the surroundings. Optical fiber technology is well suited to this purpose and here we describe the main attributes and results obtained from a fiber optic sensing system projected to gather data on distributed temperature and gas emissions in these harsh environments.

2017

The maximum edge weight clique problem: Formulations and solution approaches

Autores
Hosseinian, S; Fontes, DBMM; Butenko, S; Nardelli, MB; Fornari, M; Curtarolo, S;

Publicação
Springer Optimization and Its Applications

Abstract
Given an edge-weighted graph, the maximum edge weight clique (MEWC) problem is to find a clique that maximizes the sum of edge weights within the corresponding complete subgraph. This problem generalizes the classical maximum clique problem and finds many real-world applications in molecular biology, broadband network design, pattern recognition and robotics, information retrieval, marketing, and bioinformatics among other areas. The main goal of this chapter is to provide an up-to-date review of mathematical optimization formulations and solution approaches for the MEWC problem. Information on standard benchmark instances and state-of-the-art computational results is also included. © Springer International Publishing AG 2017.

  • 2214
  • 4352