2016
Autores
Marques Martins de Almeida, JMMM; Sadac, C;
Publicação
MATERIALS RESEARCH BULLETIN
Abstract
After carrying out a revision of the literature on the enhancement of Er3+ diffusion in LiNbO3 crystals by Er3+/Ti4+ co-diffusion and analyzing our own experimental results, we conclude that no reproducible results were reported, meaning that further research on this subject is necessary.
2016
Autores
Ye, C; Kumar, BVKV; Coimbra, MT;
Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
In this paper, a novel subject-adaptable heartbeat classificationmodel is presented, in order to address the significant interperson variations in ECG signals. A multiview learning approach is proposed to automate subject adaptation using a small amount of unlabeled personal data, without requiring manual labeling. The designed subject-customized models consist of two models, namely, general classification model and specific classification model. The general model is trained using similar subjects out of a population dataset, where a pattern matching based algorithm is developed to select the subjects that are "similar" to the particular test subject for model training. In contrast, the specific model is trained mainly on a small amount of high-confidence personal dataset, resulting from multiview-based learning. The learned general model represents the population knowledge, providing an interperson perspective for classification, while the specific model corresponds to the specific knowledge of the subject, offering an intraperson perspective for classification. The two models supplement each other and are combined to achieve improved personalized ECG analysis. The proposed methods have been validated on the MIT-BIH Arrhythmia Database, yielding an average classification accuracy of 99.4% for ventricular ectopic beat class and 98.3% for supraventricular ectopic beat class, which corresponds to a significant improvement over other published results.
2016
Autores
Shafie Khah, M; Neyestani, N; Damavandi, MY; Gil, FAS; Catalao, JPS;
Publicação
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Abstract
In this paper, the management of PEVs, uncontrolled or controlled (i.e. aggregated), and their ability to use V2G and G2V technologies are first analysed. The electricity markets are then considered; real world applications are discussed and different market types categorised. The interaction of the PEVs with some renewable energy sources (e.g. solar, wind and biomass) is also examined, and the interaction of the PEVs with demand response programs addressed. Finally, the models of PEVs are categorised and multiple types of modules, the related variables, applied methods and the considered parameters are presented.
2016
Autores
Coelho, F; Pereira, J; Vilaca, R; Oliveira, R;
Publicação
DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS, DAIS 2016
Abstract
Window functions are a sub-class of analytical operators that allow data to be handled in a derived view of a given relation, while taking into account their neighboring tuples. Currently, systems bypass parallelization opportunities which become especially relevant when considering Big Data as data is naturally partitioned. We present a shuffling technique to improve the parallel execution of window functions when data is naturally partitioned when the query holds a partitioning clause that does not match the natural partitioning of the relation. We evaluated this technique with a non-cumulative ranking function and we were able to reduce data transfer among parallel workers in 85% when compared to a naive approach.
2016
Autores
Dias, JC; Martins, MS; Ribeiro, S; Silva, MM; Esperanca, JMSS; Ribeiro, C; Botelho, G; Costa, CM; Lanceros Mendez, S;
Publicação
JOURNAL OF MATERIALS SCIENCE
Abstract
Actuators based on electroactive polymers are increasingly used in applications including microelectronic devices and artificial muscles, demanding low voltage operation and controllable switching response. This work reports on the preparation of electroactive actuators based on poly(vinylidene fluoride) (PVDF) composites with 10, 25, and 40 wt% N,N,N-trimethyl-N-(2-hydroxyethyl) ammonium bis(trifluoromethylsulfonyl)imide ([N-1 1 1 2(OH)][NTf2]) and 1-Ethyl-3-methylimidazolium Ethylsulfate ([C(2)mim][C2SO4]) ionic liquids (ILs) prepared by solvent casting. Independent of the IL type, its presence leads to the crystallization of PVDF in the piezoelectric beta-phase. The degree of crystallinity and electrical conductivity of the samples strongly depends on ILs type and content. The highest electrical conductivity was found for PVDF/IL composites with 40 wt% of [N-1 1 1 2(OH)][NTf2]. The strain displacement and bending of the PVDF/IL composites were evaluated as a function of IL type and content under applied peak voltages of 2.0, 5.0, and 10.0 V at a frequency of 10 mHz. Strain displacement of the actuators depends more on IL content than on IL type, and the best strain bending response was found for the PVDF/IL composite with 25 wt% of [N-1 1 1 2(OH)][NTf2] at 5.0 V. Further, it is shown that [C(2)mim] [C2SO4]/PVDF composites do not show cytotoxic behavior, being suitable for biomedical applications.
2016
Autores
Baltazar, S; Azevedo Perdicoúlis, TP; Lopes dos Santos, P;
Publicação
PSIG Annual Meeting 2016
Abstract
This work focus on the simulation of gas pipeline dynamic models in view to develop a leakage detection tool. The gas dynamics in the pipes is represented by a system of nonlinear partial differential equations. The linear partial differential equations is reduced to a transfer function model. Taking advantage of an electrical analogy, a pipeline can be represented by a two port network where gas mass flows behave like electrical currents and pressures like voltages. Thence, four transfer functions quadripole models are found to describe the gas pipeline dynamics, depending on the variable of interest at the boundaries. These models are simple enough to be used in the control and management of the network. These models have been validated using operational data and used to simulate a leakage. © Copyright 2016, PSIG, Inc.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.