2017
Autores
Calabrese, C; Davidson, NR; Fonseca, NA; He, Y; Kahles, A; Lehmann, K; Liu, F; Shiraishi, Y; Soulette, CM; Urban, L; Demircioglu, D; Greger, L; Li, S; Liu, D; Perry, MD; Xiang, L; Zhang, F; Zhang, J; Bailey, P; Erkek, S; Hoadley, KA; Hou, Y; Kilpinen, H; Korbel, JO; Marin, MG; Markowski, J; Nandi, T; Pan-Hammarström, Q; Pedamallu, CS; Siebert, R; Stark, SG; Su, H; Tan, P; Waszak, SM; Yung, C; Zhu, S; Awadalla, P; Creighton, CJ; Meyerson, M; Ouellette, BF; Wu, K; Yang, H; Brazma, A; Brooks, AN; Göke, J; Rätsch, G; Schwarz, RF; Stegle, O; Zhang, Z;
Publicação
Abstract
2017
Autores
Devezas, J; Nunes, S;
Publicação
ERCIM NEWS
Abstract
In an information society, people expect to find answers to their questions quickly and with little effort. Sometimes, these answers are locked within textual documents, which often require a manual analysis, after being retrieved from the web using search engines. At FEUP InfoLab, we are researching graph-based models to index combined data (text and knowledge), with the goal of improving entity-oriented search effectiveness.
2017
Autores
Almeida, PS; Baquero, C; Farach Colton, M; Jesus, P; Mosteiro, MA;
Publicação
DISTRIBUTED COMPUTING
Abstract
Flow-Updating (FU) is a fault-tolerant technique that has proved to be efficient in practice for the distributed computation of aggregate functions in communication networks where individual processors do not have access to global information. Previous distributed aggregation protocols, based on repeated sharing of input values (or mass) among processors, sometimes called Mass-Distribution (MD) protocols, are not resilient to communication failures (or message loss) because such failures yield a loss of mass. In this paper, we present a protocol which we call Mass-Distribution with Flow-Updating (MDFU). We obtain MDFU by applying FU techniques to classic MD. We analyze the convergence time of MDFU showing that stochastic message loss produces low overhead. This is the first convergence proof of an FU-based algorithm. We evaluate MDFU experimentally, comparing it with previous MD and FU protocols, and verifying the behavior predicted by the analysis. Finally, given that MDFU incurs a fixed deviation proportional to the message-loss rate, we adjust the accuracy of MDFU heuristically in a new protocol called MDFU with Linear Prediction (MDFU-LP). The evaluation shows that both MDFU and MDFU-LP behave very well in practice, even under high rates of message loss and even changing the input values dynamically.
2017
Autores
Martínez, SM; Escribano, AH; Carretón, MC; Lázaro, EG; Catalão, JPS;
Publicação
Proceedings - 2016 51st International Universities Power Engineering Conference, UPEC 2016
Abstract
Significant wind power ramps have a remarkable influence on the integration of wind power. Their variability and uncertainty affect to the wind power forecast increasing the error and reducing the reliability in the continued operation of the power system. Ramp events are considered the main source of forecasting error and their study is imperative for an improvement of prediction tools. In this aspect, the first steps to achieve a study of the influence are identifying, grouping and temporal characterizing of the ramp events. This paper develops a methodology for wind power ramp events recognition in order to analyze the relationship between these events and the accuracy of the wind power forecast system according with two criteria: maximum forecast deviation and mean magnitude error. The methodology is validated using real data from the highly aggregated Spanish power system and short time timescale forecasting values. © 2016 IEEE.
2017
Autores
Carneiro, G; Tavares, JMRS; Bradley, A; Papa, JP; Nascimento, JC; Cardoso, JS; Belagiannis, V; Lu, Z;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
2017
Autores
Leitão, P; Barbosa, J; Geraldes, CAS; Coelho, JP;
Publicação
Service Orientation in Holonic and Multi-Agent Manufacturing - Proceedings of SOHOMA 2017, Nantes, France, October 19-20, 2017
Abstract
Multi-stage manufacturing, typical in important industrial sectors, is inherently a complex process. The application of the zero defect manufacturing (ZDM) philosophy, together with recent technological advances in cyber-physical systems (CPS), presents significant challenges and opportunities for the implementation of new methodologies towards the continuous system improvement. This paper introduces the main principles of a multi-agent CPS aiming the application of ZDM in multi-stage production systems, which is being developed under the EU H2020 GO0D MAN project. In particular, this paper describes the MAS architecture that allows the distributed data collection and the balancing of the data analysis for monitoring and adaptation among cloud and edge layers, to enable the earlier detection of process and product variability, and the generation of new optimized knowledge by correlating the aggregated data. © 2018, Springer International Publishing AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.