Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2017

Online Conversation Application with Confidentiality, Anonymity, and Identity Requirements

Autores
Fernandes, P; Pinto, A;

Publicação
AMBIENT INTELLIGENCE- SOFTWARE AND APPLICATIONS- 8TH INTERNATIONAL SYMPOSIUM ON AMBIENT INTELLIGENCE (ISAMI 2017)

Abstract
The increase in usage of smartphones and the ubiquity of Internet access have made mobile communications services very attractive to users. Messaging services are among the most popular services on the Internet. In recent years, this services started to support confidentiality and anonymity. A recurrent problem with the existing messaging solutions is their lack of resistance to impersonation attacks. The proposed solution addresses the impersonation problem, without neglecting user confidentiality and anonymity, by forcing users to exchange the required cryptographic material among themselves. Moreover, this exchange must use a proximity communication technology, forcing the users to physically meet.

2017

2D computational modeling of optical trapping effects on malaria-infected red blood cells

Autores
Paiva, JS; Ribeiro, RSR; Jorge, PAS; Rosa, CC; Guerreiro, A; Cunha, JPS;

Publicação
Optics InfoBase Conference Papers

Abstract
A computational method for optical fiber trapping of healthy and Malariainfected blood cells characterization is proposed. A trapping force relation with the infection stage was found, which could trigger the development of a diagnostic sensor. © OSA 2017.

2017

Towards Decentralized Conformance Checking in Model-Based Testing of Distributed Systems

Autores
Lima, BMC; Faria, JCP;

Publicação
Proceedings - 10th IEEE International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2017

Abstract
In a growing number of domains, the provisioning of end-to-end services to the users depends on the proper interoperation of multiple products, forming a new distributed system. To ensure interoperability and the integrity of this new distributed system, it is important to conduct integration tests that verify not only the interactions with the environment but also the interactions between the system components. Integration test scenarios for that purpose may be conveniently specified by means of UML sequence diagrams, possibly allowing multiple execution paths. The automation of such integration tests requires that test components are also distributed, with a local tester deployed close to each system component, and a central tester coordinating the local testers. In such a test architecture, it is important to minimize the communication overhead during test execution. Hence, in this paper we investigate conditions upon which conformance errors can be detected locally (local observability) and test inputs can be decided locally (local controllability) by the local testers, without the need for exchanging coordination messages between the test components during test execution. The conditions are specified in a formal specification language that allows executing and validating the specification. Examples of test scenarios are also presented, illustrating local observability and controllability problems associated with optional messages without corresponding acknowledgment messages, races and non-local choices. © 2017 IEEE.

2017

Transmission gas pipelines: 2D models simulation

Autores
Azevedo Perdicoulis, TPA; dos Santos, PL;

Publicação
2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)

Abstract
This article presents four state-space models for high pressure gas pipelines, departing from a system of nonlinear partial differential equations. The models were derived taking advantage of an electrical analogy and are very accurate and simple, therefore suitable for network simulation and analysis. The models' simulation is compared with the data obtained with Simone (R), a commercial simulator of gas transport and distribution networks used by many european companies, and exhibit similar accuracy.

2017

Ambient intelligent systems the role of non-intrusive approaches

Autores
Novais, P; Carneiro, D; Gonçalves, F; Pêgo, JM;

Publicação
IJCCI 2017 - Proceedings of the 9th International Joint Conference on Computational Intelligence

Abstract
There is currently a significant interest in consumer electronics in applications and devices that monitor and improve the user's well-being. This is one of the key aspects in the development of ambient intelligence systems. Nonetheless, existing approaches are generally based on physiological sensors, which are intrusive and cannot be realistically used, especially in ambient intelligence in which the transparency, pervasiveness and sensitivity are paramount. We put forward a new approach to the problem in which user behavioral cues are used as an input to assess inner state. This innovative approach has been validated by research in the last years and has characteristics that may enable the development of true unobtrusive, pervasive and sensitive ambient intelligent systems. © 2017 by SCITEPRESS - Science and Technology Publications, Lda.

2017

Quantifying telescope phase discontinuities external to adaptive optics systems by use of phase diversity and focal plane sharpening

Autores
Lamb, MP; Correia, C; Sauvage, JF; Véran, JP; Andersen, DR; Vigan, A; Wizinowich, PL; van Dam, MA; Mugnier, L; Bond, C;

Publicação
JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS

Abstract
We propose and apply two methods to estimate pupil plane phase discontinuities for two realistic scenarios on the very large telescope (VLT) and Keck. The methods use both phase diversity and a form of image sharpening. For the case of VLT, we simulate the "low wind effect" (LWE) that is responsible for focal plane errors in the spectro-polarimetric high contrast exoplanet research (SPHERE) system in low wind and good seeing conditions. We successfully estimate the simulated LWE using both methods and show that they are complimentary to one another. We also demonstrate that single image phase diversity (also known as phase retrieval with diversity) is also capable of estimating the simulated LWE when using the natural defocus on the SPHERE/differential tip tilt sensor (DTTS) imager. We demonstrate that phase diversity can estimate the LWE to within 30-nm root mean square wavefront error (RMS WFE), which is within the allowable tolerances to achieve a target SPHERE contrast of 10-6. Finally, we simulate 153-nm RMS of piston errors on the mirror segments of Keck and produce NIRC2 images subject to these effects. We show that a single, diverse image with 1.5 waves (peak-to-valley) of focus can be used to estimate this error to within 29-nm RMS WFE, and a perfect correction of our estimation would increase the Strehl ratio of an NIRC2 image by 12%.

  • 2012
  • 4312