2018
Autores
Matuszyk, P; Vinagre, J; Spiliopoulou, M; Jorge, AM; Gama, J;
Publicação
KNOWLEDGE AND INFORMATION SYSTEMS
Abstract
Forgetting is often considered a malfunction of intelligent agents; however, in a changing world forgetting has an essential advantage. It provides means of adaptation to changes by removing effects of obsolete (not necessarily old) information from models. This also applies to intelligent systems, such as recommender systems, which learn users' preferences and predict future items of interest. In this work, we present unsupervised forgetting techniques that make recommender systems adapt to changes of users' preferences over time. We propose eleven techniques that select obsolete information and three algorithms that enforce the forgetting in different ways. In our evaluation on real-world datasets, we show that forgetting obsolete information significantly improves predictive power of recommender systems.
2018
Autores
Meyer, MI; Galdran, A; Costa, P; Mendonça, AM; Campilho, A;
Publicação
Image Analysis and Recognition - 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings
Abstract
The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents a new approach to solve this problem by means of a Fully-Connected Convolutional Neural Network that is specifically adapted for artery/vein classification. For this, a loss function that focuses only on pixels belonging to the retinal vessel tree is built. The relevance of providing the model with different chromatic components of the source images is also analyzed. The performance of the proposed method is evaluated on the RITE dataset of retinal images, achieving promising results, with an accuracy of 96 % on large caliber vessels, and an overall accuracy of 84 %. © 2018, Springer International Publishing AG, part of Springer Nature.
2018
Autores
Cherri, LH; Cherri, AC; Carravilla, MA; Oliveira, JF; Bragion Toledo, FMB; Goncalves Vianna, ACG;
Publicação
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
As in many other combinatorial optimisation problems, research on nesting problems (aka irregular packing problems) has evolved around the dichotomy between continuous (time consuming) and discrete (memory consuming) representations of the solution space. Recent research has been devoting increasing attention to discrete representations for the geometric layer of nesting problems, namely in mathematical programming-based approaches. These approaches employ conventional regular meshes, and an increase in their precision has a high computational cost. In this paper, we propose a data structure to represent non-regular meshes, based on the geometry of each piece. It supports non-regular discrete geometric representations of the shapes, and by means of the proposed data structure, the discretisation can be easily adapted to the instances, thus overcoming the precision loss associated with discrete representations and consequently allowing for a more efficient implementation of search methods for the nesting problem. Experiments are conducted with the dotted-board model - a recently published mesh-based binary programming model for nesting problems. In the light of both the scale of the instances, which are now solvable, and the quality of the solutions obtained, the results are very promising.
2018
Autores
Pinto, MM;
Publicação
Revista Ibero-Americana de Ciência da Informação
Abstract
2018
Autores
Gama, J;
Publicação
MATEC Web of Conferences
Abstract
2018
Autores
Vilaça, L; Viana, P; Carvalho, P; Andrade, MT;
Publicação
Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition, SoCPaR 2018, Porto, Portugal, December 13-15, 2018
Abstract
Over the last years, Deep Learning has become one of the most popular research fields of Artificial Intelligence. Several approaches have been developed to address conventional challenges of AI. In computer vision, these methods provide the means to solve tasks like image classification, object identification and extraction of features. In this paper, some approaches to face detection and recognition are presented and analyzed, in order to identify the one with the best performance. The main objective is to automate the annotation of a large dataset and to avoid the costy and time-consuming process of content annotation. The approach follows the concept of incremental learning and a R-CNN model was implemented. Tests were conducted with the objective of detecting and recognizing one personality within image and video content. Results coming from this initial automatic process are then made available to an auxiliary tool that enables further validation of the annotations prior to uploading them to the archive. Tests show that, even with a small size dataset, the results obtained are satisfactory. © 2020, Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.