Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2019

Mineração de dados auxiliando na descoberta das causas da evasão escolar: Um Mapeamento Sistemático da Literatura

Autores
Torres Marques, L; Félix De Castro, A; Torres Marques, B; Carvalho Pereira Silva, J; Gabriel Gadelha Queiroz, P;

Publicação
RENOTE

Abstract
Este trabalho apresenta um Mapeamento Sistemático da Literatura sobre evasão escolar, em que se buscou identificar tecnologias de mineração de dados e fatores indutores para evasão escolar, que vem sendo exploradas para desvendar as possíveis causas da evasão escolar. As buscas foram realizadas em quatro bases de dados científicas, com o objetivo de responder a seguinte questão de pesquisa: “Quais ferramentas, técnicas e fatores indutores vem sendo utilizados para desvendar possíveis causas da evasão escolar?”. Observou-se que a ferramenta Weka é a mais utilizada para auxiliar a desvendar as causas da evasão escolar. Entre as técnicas, destaca-se a utilização da classificação. Por fim, o mapeamento identificou que os principais trabalhos da área se concentram em estudar fatores relacionados às características individuais do aluno.

2019

Driverless Cars-Another Piece of the Puzzle

Autores
Dias, TG;

Publicação
IEEE TECHNOLOGY AND SOCIETY MAGAZINE

Abstract

2019

Green Mobile Networks for 5G and Beyond

Autores
Masoudi, M; Khafagy, MG; Conte, A; El Amine, A; Francoise, B; Nadjahi, C; Salem, FE; Labidi, W; Sural, A; Gati, A; Bodere, D; Arikan, E; Aklamanu, F; Louahlia Gualous, H; Lallet, J; Pareek, K; Nuaymi, L; Meunier, L; Silva, P; Almeida, NT; Chahed, T; Sjolund, T; Cavdar, C;

Publicação
IEEE ACCESS

Abstract
The heated 5G network deployment race has already begun with the rapid progress in standardization efforts, backed by the current market availability of 5G-enabled network equipment, ongoing 5G spectrum auctions, early launching of non-standalone 5G network services in a few countries, among others. In this paper, we study current and future wireless networks from the viewpoint of energy efficiency (EE) and sustainability to meet the planned network and service evolution toward, along, and beyond 5G, as also inspired by the findings of the EU Celtic-Plus SooGREEN Project. We highlight the opportunities seized by the project efforts to enable and enrich this green nature of the network as compared to existing technologies. In specific, we present innovative means proposed in SooGREEN to monitor and evaluate EE in 5G networks and beyond. Further solutions are presented to reduce energy consumption and carbon footprint in the different network segments. The latter spans proposed virtualized/cloud architectures, efficient polar coding for fronthauling, mobile network powering via renewable energy and smart grid integration, passive cooling, smart sleeping modes in indoor systems, among others. Finally, we shed light on the open opportunities yet to be investigated and leveraged in future developments.

2019

FAST-FUSION: An Improved Accuracy Omnidirectional Visual Odometry System with Sensor Fusion and GPU Optimization for Embedded Low Cost Hardware

Autores
Aguiar, A; Santos, F; Sousa, AJ; Santos, L;

Publicação
APPLIED SCIENCES-BASEL

Abstract
The main task while developing a mobile robot is to achieve accurate and robust navigation in a given environment. To achieve such a goal, the ability of the robot to localize itself is crucial. In outdoor, namely agricultural environments, this task becomes a real challenge because odometry is not always usable and global navigation satellite systems (GNSS) signals are blocked or significantly degraded. To answer this challenge, this work presents a solution for outdoor localization based on an omnidirectional visual odometry technique fused with a gyroscope and a low cost planar light detection and ranging (LIDAR), that is optimized to run in a low cost graphical processing unit (GPU). This solution, named FAST-FUSION, proposes to the scientific community three core contributions. The first contribution is an extension to the state-of-the-art monocular visual odometry (Libviso2) to work with omnidirectional cameras and single axis gyro to increase the system accuracy. The second contribution, it is an algorithm that considers low cost LIDAR data to estimate the motion scale and solve the limitations of monocular visual odometer systems. Finally, we propose an heterogeneous computing optimization that considers a Raspberry Pi GPU to improve the visual odometry runtime performance in low cost platforms. To test and evaluate FAST-FUSION, we created three open-source datasets in an outdoor environment. Results shows that FAST-FUSION is acceptable to run in real-time in low cost hardware and that outperforms the original Libviso2 approach in terms of time performance and motion estimation accuracy.

2019

Database Systems for Advanced Applications - 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22-25, 2019, Proceedings, Part II

Autores
Li, G; Yang, J; Gama, J; Natwichai, J; Tong, Y;

Publicação
DASFAA (2)

Abstract

2019

Distributed Constrained Optimization Towards Effective Agent-Based Microgrid Energy Resource Management

Autores
Lezama, F; de Cote, EM; Farinelli, A; Soares, JP; Pinto, T; Vale, ZA;

Publicação
Progress in Artificial Intelligence - 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3-6, 2019, Proceedings, Part I

Abstract

  • 1374
  • 4201