Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Adaptive Protection Strategies for Multi-Microgrid Systems: Enhancing Resilience and Reliability in Medium Voltage Distribution Networks

Autores
Habib, HUR; Reiz, C; Alves, E; Gouveia, CS;

Publicação
2025 IEEE Kiel PowerTech

Abstract
This paper presents an adaptive protection strategy for multi-microgrid (MMG) systems with inverter-based resources (IBRs) in medium voltage (MV) networks, using the IEEE 33-bus test system. The approach combines overcurrent (OC) and undervoltage (UV) protections through an offline-optimized, clustering-based scheme and real-time selection of setting groups. A metaheuristic algorithm determines optimal relay settings for representative scenarios, ensuring responsive and coordinated protection. Hardware-in-the-loop validation on OPAL-RT confirms the method's effectiveness across varying loads, DER outputs, and fault conditions. Results demonstrate reliable fault isolation, smooth mode transitions, and uninterrupted supply to healthy segments. Identified limitations in high-impedance fault handling suggest future improvements. © 2025 Elsevier B.V., All rights reserved.

2025

Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR

Autores
Ferreira, L; Bias, ED; Barros, QS; Pádua, L; Matricardi, EAT; Sousa, JJ;

Publicação
FORESTS

Abstract
Reduced-impact logging (RIL) has been recognized as a promising strategy for biodiversity conservation and carbon sequestration within sustainable forest management (SFM) areas. However, monitoring the forest understory-a critical area for assessing logging impacts-remains challenging due to limitations in conventional methods such as field inventories and global navigation satellite system (GNSS) surveys, which are time-consuming, costly, and often lack accuracy in complex environments. Additionally, aerial and satellite imagery frequently underestimate the full extent of disturbances as the forest canopy obscures understory impacts. This study examines the effectiveness of the relative density model (RDM), derived from airborne LiDAR data, for mapping and monitoring understory disturbances. A field-based validation of LiDAR-derived RDM was conducted across 25 sites, totaling 5504.5 hectares within the Jamari National Forest, Rond & ocirc;nia, Brazil. The results indicate that the RDM accurately delineates disturbances caused by logging infrastructure, with over 90% agreement with GNSS field data. However, the model showed the greatest discrepancy for skid trails, which, despite their lower accuracy in modeling, accounted for the largest proportion of the total impacted area among infrastructure. The findings include the mapping of 35.1 km of primary roads, 117.4 km of secondary roads, 595.6 km of skid trails, and 323 log landings, with skid trails comprising the largest proportion of area occupied by logging infrastructure. It is recommended that airborne LiDAR assessments be conducted up to two years post-logging, as impacts become less detectable over time. This study highlights LiDAR data as a reliable alternative to traditional monitoring approaches, with the ability to detect understory impacts more comprehensively for monitoring selective logging in SFM areas of the Amazon, providing a valuable tool for both conservation and climate mitigation efforts.

2025

An Over-Actuated Hexacopter Tilt-Rotor UAV Prototype for Agriculture of Precision: Modeling and Control

Autores
Pimentel, GO; dos Santos, MF; Lima, J; Mercorelli, P; Fernandes, FM;

Publicação
SENSORS

Abstract
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy. This arrangement is particularly beneficial for precision agriculture (PA) applications where accurate monitoring and management of crops are critical. The enhanced maneuverability allows for precise navigation in complex vineyard environments, enabling the unmanned aerial vehicle (UAV) to perform tasks such as aerial imaging and crop health monitoring. The employed control architecture consists of cascaded proportional (P)-proportional, integral and derivative (PID) controllers using the successive loop closure (SLC) method on the five controlled degrees of freedom (DoFs). Simulated results using Gazebo demonstrate that the HTR achieves stability and maneuverability throughout the flight path, significantly improving precision agriculture practices. Furthermore, a comparison of the HTR with a traditional hexacopter validates the proposed approach.

2025

Application of Cloud Simulation Techniques for Robotic Software Validation

Autores
Vieira, D; Oliveira, M; Arrais, R; Melo, P;

Publicação
SENSORS

Abstract
Continuous Integration and Continuous Deployment are known methodologies for software development that increase the overall quality of the development process. Several robotic software repositories make use of CI/CD tools as an aid to development. However, very few CI pipelines take advantage of using cloud computing to run simulations. Here, a CI pipeline is proposed that takes advantage of such features, applied to the development of ATOM, a ROS-based application capable of carrying out the calibration of generalized robotic systems. The proposed pipeline uses GitHub Actions as a CI/CD engine, AWS RoboMaker as a service for running simulations on the cloud and Rigel as a tool to both containerize ATOM and execute the tests. In addition, a static analysis and unit testing component is implemented with the use of Codacy. The creation of the pipeline was successful, and it was concluded that it constitutes a valuable tool for the development of ATOM and a blueprint for the creation of similar pipelines for other robotic systems.

2025

Data Science: Foundations and Applications - 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2025, Sydney, NSW, Australia, June 10-13, 2025, Proceedings, Part VI

Autores
Wu, X; Spiliopoulou, M; Wang, C; Kumar, V; Cao, L; Zhou, X; Pang, G; Gama, J;

Publicação
PAKDD (6)

Abstract

2025

AI-Assisted Adaptive Protection for Medium Voltage Distribution Networks: A Two-Phase Application Proposal with HIL Testing

Autores
Alves, E; Reiz, C; Gouveia, CS;

Publicação
2025 IEEE Kiel PowerTech

Abstract
The increasing penetration of inverter-based resources (IBR) in medium voltage (MV) networks presents significant challenges for traditional overcurrent (OC) protection systems, particularly in ensuring selectivity, reliability, and fault isolation. This paper presents an adaptive protection system (APS) that dynamically adjusts protection settings based on real-time network conditions, addressing the challenges posed by distributed energy resources (DER). The methodology builds on ongoing research and development efforts, combining an offline phase, where operational scenarios are simulated using historical data, clustered with fuzzy c-means (FCM), and optimized with evolutionary particle swarm optimization (EPSO), and an online phase. To overcome the static nature of conventional schemes, a machine learning (ML)-based classifier is integrated into the APS, enabling real-time adaptation of protection settings. In the online phase, a centralized substation protection controller (CPC) leverages real-time measurements, communicated via IEC 61850 standard protocols, to classify network conditions using a support vector machine (SVM) classifier and activate the appropriate protection settings. The proposed APS has been validated on a Hardware-in-the-Loop (HIL) platform, demonstrating significant improvements in fault detection times, selectivity, and reliability compared to traditional OC protection systems. As part of a continued effort to refine and expand the system's capabilities, this work highlights the potential of integrating artificial intelligence (AI) and real-time/online decision-making to enhance the adaptability and robustness of MV network protection in scenarios with high DER penetration. © 2025 Elsevier B.V., All rights reserved.

  • 133
  • 4281