2020
Autores
S. Barbosa, L; Ali Abam, M;
Publicação
Lecture Notes in Computer Science
Abstract
2020
Autores
Tosin, R; Pocas, I; Goncalves, I; Cunha, M;
Publicação
VITIS
Abstract
Hyperspectral data collected through a handheld spectroradiometer (400-1010 nm) were tested for assessing the grapevine predawn leaf water potential (psi(pd)) measured by a Scholander chamber in two test sites of Douro wine region. The study was implemented in 2017, being a year with very hot and dry summer, conditions prone to severe water shortage. Three grapevine cultivars, 'Touriga Nacional', 'Touriga Franca' and 'Tinta Barroca' were sampled both in rainfed and irrigated vineyards, with a total of 325 plants assessed in four post-flowering dates. A large set of vegetation indices computed with the hyperspectral data and optimized for the psi(pd) values, as well as structural variables, were used as predictors in the model. From a total of 631 possible predictors, four variables were selected based on a stepwise forward procedure and the Wald statistics: irrigation treatment, test site, Anthocyanin Reflectance Index Optimized (ARI(opt_656,647)) and Normalized Ratio Index (NRI711,700). An ordinal logistic regression model was calibrated using 70 % of the dataset randomly selected and the 30 of the remaining observations where used in model validation. The overall model accuracy obtained with the validation dataset was 73.2 %, with the class of psi(pd) corresponding to the high-water deficit presenting a positive prediction value of 79.3 %. The accuracy and operability of this predictive model indicates good perspectives for its use in the monitoring of grapevine water status, and to support the irrigation tasks.
2020
Autores
Oliveira, LT; Silva, EF; Oliveira, JF; Bragion Toledo, FMB;
Publicação
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
The irregular strip packing problem arises in a wide variety of industrial sectors, from garment and footwear to the metal industry, and has a substantial impact in raw-material waste minimization. The goal of this problem is to find a layout for a large object to be cut into smaller pieces. What differentiates this problem from all the other cutting and packing problems, and is its primary source of complexity, is the irregular (non-rectangular) shape of the small pieces. However, in practical applications, after a layout has been determined, a second problem arises: finding the path that the cutting tool has to follow to actually cut the pieces, as previously planned. This second problem is known as the cutting path determination problem. Although the solution of the first problem strongly influences the resolution of the second one, only a few studies are dealing with cutting/packing and cutting path determination together, and, to the best of the authors' knowledge, none of them considers the irregular strip packing problem. In this paper, we propose the first mathematical programming model that integrates the irregular strip packing and the cutting path determination problems. Computational experiments were run to show the correctness of the proposed model and the advantage of tackling the two problems together. Two variants of the cutting path determination problem were considered, the fixed vertex and the free cut models. The strengths and drawbacks of these two variants are also established through computational experiments. Overall, the computational results show that the integration of these problems is advantageous, even if only small instances could be solved to optimality, given that solving to optimality the integrated is at least as difficult as solving each one of the other problems individually. As future research, it should be highlighted that the proposed integrated model is a solid basis for the development of matheuristics aiming at tackling real-world size problems.
2020
Autores
Silva, MF; Lima, JL; Reis, LP; Sanfeliu, A; Tardioli, D;
Publicação
Advances in Intelligent Systems and Computing
Abstract
2020
Autores
Carlevaro Fita, J; Lanzós, A; Feuerbach, L; Hong, C; Mas Ponte, D; Pedersen, JS; Abascal, F; Amin, SB; Bader, GD; Barenboim, J; Beroukhim, R; Bertl, J; Boroevich, KA; Brunak, S; Campbell, PJ; Carlevaro Fita, J; Chakravarty, D; Chan, CWY; Chen, K; Choi, JK; Deu Pons, J; Dhingra, P; Diamanti, K; Feuerbach, L; Fink, JL; Fonseca, NA; Frigola, J; Gambacorti Passerini, C; Garsed, DW; Gerstein, M; Getz, G; Gonzalez Perez, A; Guo, Q; Gut, IG; Haan, D; Hamilton, MP; Haradhvala, NJ; Harmanci, AO; Helmy, M; Herrmann, C; Hess, JM; Hobolth, A; Hodzic, E; Hong, C; Hornshøj, H; Isaev, K; Izarzugaza, JMG; Johnson, R; Johnson, TA; Juul, M; Juul, RI; Kahles, A; Kahraman, A; Kellis, M; Khurana, E; Kim, J; Kim, JK; Kim, Y; Komorowski, J; Korbel, JO; Kumar, S; Lanzós, A; Larsson, E; Lawrence, MS; Lee, D; Lehmann, KV; Li, S; Li, X; Lin, Z; Liu, EM; Lochovsky, L; Lou, S; Madsen, T; Marchal, K; Martincorena, I; Martinez Fundichely, A; Maruvka, YE; McGillivray, PD; Meyerson, W; Muiños, F; Mularoni, L; Nakagawa, H; Nielsen, MM; Paczkowska, M; Park, K; Park, K; Pedersen, JS; Pich, O; Pons, T; Pulido Tamayo, S; Raphael, BJ; Reimand, J; Reyes Salazar, I; Reyna, MA; Rheinbay, E; Rubin, MA; Rubio Perez, C; Sabarinathan, R; Sahinalp, SC; Saksena, G; Salichos, L; Sander, C; Schumacher, SE; Shackleton, M; Shapira, O; Shen, C; Shrestha, R; Shuai, S; Sidiropoulos, N; Sieverling, L; Sinnott Armstrong, N; Stein, LD; Stuart, JM; Tamborero, D; Tiao, G; Tsunoda, T; Umer, HM; Uusküla Reimand, L; Valencia, A; Vazquez, M; Verbeke, LPC; Wadelius, C; Wadi, L; Wang, J; Warrell, J; Waszak, SM; Weischenfeldt, J; Wheeler, DA; Wu, G; Yu, J; Zhang, J; Zhang, X; Zhang, Y; Zhao, Z; Zou, L; von Mering, C; Johnson, R;
Publicação
COMMUNICATIONS BIOLOGY
Abstract
Joana Carlevaro-Fita, Andres Lanzos et al. present the Cancer LncRNA Census (CLC), a manually curated dataset of 122 long noncoding RNAs (lncRNAs) with experimentally-validated functions in cancer based on data from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. CLC lncRNAs have unique gene features, and a number display evidence for cancer-driving functions that are conserved from humans to mice. Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis.
2020
Autores
Lujano Rojas, JM; Zubi, G; Dufo Lopez, R; Bernal Agustin, JL; Atencio Guerra, JL; Catalao, JPS;
Publicação
JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING
Abstract
This paper presents a methodology for the optimal placement and sizing of reactive power compensation devices in a distribution system (DS) with distributed generation. Quasi-static time series is embedded in an optimization method based on a genetic algorithm to adequately represent the uncertainty introduced by solar photovoltaic generation and electricity demand and its effect on DS operation. From the analysis of a typical DS, the reactive power compensation rating power results in an increment of 24.9% when compared to the classical genetic algorithm model. However, the incorporation of quasi-static time series analysis entails an increase of 26.8% on the computational time required.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.