2020
Autores
Aschenbrenner, D; Rieder, JSI; van Tol, D; van Dam, J; Rusak, Z; Blech, JO; Azangoo, M; Panu, S; Kruusamae, K; Masnavi, H; Rybalskii, I; Aabloo, A; Petry, M; Teixeira, G; Thiede, B; Pedrazzoli, P; Ferrario, A; Foletti, M; Confalonieri, M; Bertaggia, D; Togias, T; Makris, S;
Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR 2020)
Abstract
How to visualize recorded production data in Virtual Reality? How to use state of the art Augmented Reality displays that can show robot data? This paper introduces an open-source ICT framework approach for combining Unity-based Mixed Reality applications with robotic production equipment using ROS Industrial. This publication gives details on the implementation and demonstrates the use as a data analysis tool in the context of scientific exchange within the area of Mixed Reality enabled human-robot co-production.
2020
Autores
Ramoneda, P; Bernardes, G;
Publicação
149th Audio Engineering Society Convention 2020, AES 2020
Abstract
In this paper, we advance an enhanced method for computing Harte et al.’s (2006) Harmonic Change Detection Function (HCDF), which aims to detect harmonic transitions in musical audio signals. Each of the HCDF component blocks is revisited in light of recent advances in harmonic description and transformation. To evaluate our proposal, we compute an exhaustive grid search to compare the multiple proposed algorithms and a large set of parameterizations across four large style-specific musical datasets. Our results show that the newly proposed methods and parameter optimization improve the detection of harmonic changes by 5.57% (f-score) with respect to previous methods. Furthermore, while guaranteeing recall values at >99%, our other method improves precision by 6.28%.
2020
Autores
Mollinetti, MAF; Gatto, BB; Neto, MTRS; Kuno, T;
Publicação
ENTROPY
Abstract
Artificial Bee Colony (ABC) is a Swarm Intelligence optimization algorithm well known for its versatility. The selection of decision variables to update is purely stochastic, incurring several issues to the local search capability of the ABC. To address these issues, a self-adaptive decision variable selection mechanism is proposed with the goal of balancing the degree of exploration and exploitation throughout the execution of the algorithm. This selection, named Adaptive Decision Variable Matrix (A-DVM), represents both stochastic and deterministic parameter selection in a binary matrix and regulates the extent of how much each selection is employed based on the estimation of the sparsity of the solutions in the search space. The influence of the proposed approach to performance and robustness of the original algorithm is validated by experimenting on 15 highly multimodal benchmark optimization problems. Numerical comparison on those problems is made against the ABC and their variants and prominent population-based algorithms (e.g., Particle Swarm Optimization and Differential Evolution). Results show an improvement in the performance of the algorithms with the A-DVM in the most challenging instances.
2020
Autores
Neves, R; Ramos, T; Simionesei, L; Oliveira, A; Grosso, N; Santos, F; Moura, P; Stefan, V; Escorihuela, MJ; Gao, Q; Pérez-Pastor, A; Riquelme, J; Forcén, M; Biddoccu, M; Rabino, D; Bagagiolo, G; Karakaya, N;
Publicação
Abstract
2020
Autores
de Oliveira Dantas, ABD; de Carvalho Junior, FH; Barbosa, LS;
Publicação
SCIENCE OF COMPUTER PROGRAMMING
Abstract
HPC Shelf is a proposal of a cloud computing platform to provide component-oriented services for High Performance Computing (HPC) applications. This paper presents a Verification-as-a-Service (VaaS) framework for component certification on HPC Shelf. Certification is aimed at providing higher confidence that components of parallel computing systems of HPC Shelf behave as expected according to one or more requirements expressed in their contracts. To this end, new abstractions are introduced, starting with certifier components. They are designed to inspect other components and verify them for different types of functional, non-functional and behavioral requirements. The certification framework is naturally based on parallel computing techniques to speed up verification tasks.
2020
Autores
Faraji, J; Ketabi, A; Hashemi Dezaki, H; Shafie Khah, M; Catalao, JPS;
Publicação
IEEE ACCESS
Abstract
Energy management systems (EMSs) play an important role in the optimal operation of prosumers. As an essential segment of each EMS, the load forecasting (LF) block enhances the optimal utilization of renewable energy sources (RESs) and battery energy storage systems (BESSs). In this paper, a new optimal day-ahead scheduling and operation of the prosumer is proposed based on the two-level corrective LF. The proposed two-level corrective LF actions are developed through a very precise short-term LF. In the first level, a time-series LF is applied using multi-layer perceptron artificial neural networks (MLP-ANNs). In order to improve the accuracy of the forecasted load data at the first level, the second level corrective LF is applied using feed-forward (FF) ANNs. The second stage prediction is initiated when the LF results violate the pre-defined criteria. The proposed method is applied to a prosumer under different cases (based on the consideration of BESS operation behaviors and cost) and various scenarios (based on the accuracy of the load data). The obtained optimal day-ahead operation results illustrate the advantages of the proposed method and its corrective forecasting process. The comparison of the obtained results and those of other available ones show the effectiveness of the proposed optimal operation of the prosumers. The advantages of the proposed method are highlighted while the BESS costs are considered.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.