Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2020

Creativity in prototypes design and sustainability - The case of social organizations

Autores
Silveira, C; Reis, L; Santos, V; Mamede, HS;

Publicação
Advances in Science, Technology and Engineering Systems

Abstract
The role of creativity techniques in the design of prototypes is of particular interest given its potential for innovation. At same time, despite the efforts of decades in terms of policies and programs of action, humanity has not yet come close to global sustainability. Sustainability design must involve society and creatively employ all available knowledge sources for creating sustainable software. This paper proposes a prototype design approach rooted in employing creativity techniques, while being guided by the dimensions and principles of the Karlskrona Manifesto. This approach is applied to the development of a multidisciplinary aggregator for the optimization of social services. As a result. guidelines for the use of creativity in requirements engineering will be presented, as well as on how to include sustainability issues, namely the Sustainable Development Goals and the five dimensions of sustainability in the design of prototypes.

2020

Differentiation of hypertensive heart disease and hypertrophic cardiomyopathy with myocardial stiffness measurements: a shear wave imaging study using ultra-high frame rate echocardiography

Autores
Cvijic, M; Bezy, S; Petrescu, A; Santos, P; Orlowska, M; Chakraborty, B; Duchenne, J; Pedrosa, J; Vanassche, T; Van Cleemput, J; Dhooge, J; Voigt, J;

Publicação
European Heart Journal

Abstract
Abstract Background Recently, cardiac shear wave (SW) elastography, based on high frame rate (HFR) echocardiography, has been proposed as new non-invasive technique for assessing myocardial stiffness. As myocardial stiffness increases with increasing wall stress, differences in measured operating myocardial stiffness do not necessarily reflect differences in intrinsic myocardial properties, but can also be caused by mere changes in loading or chamber geometry. This complicates myocardial stiffness interpretation for different types of pathologic hypertrophy. Purpose To explore the relationship between myocardial stiffness and underlying pathological substrates for cardiac hypertrophy. Methods We included 20 patients with hypertension (HT) and myocardial remodelling (59±14 years, 75% male), 20 patients with hypertrophic cardiomyopathy (HCM) (59±16 years, 60% male) and 20 healthy controls (56±14 years, 75% male). Left ventricular (LV) parasternal long axis views were acquired with an experimental HFR scanner at 1293±362 frames per seconds. Propagation velocity of SW occurring after mitral valve closure in the interventricular septum (IVS) served as measure of operating myocardial stiffness (Figure A). To compare myocardial stiffness among hearts with differing loading conditions and chamber geometry, SW velocities were normalized to end-diastolic wall stress, estimated at IVS from regional wall thickness, longitudinal and circumferential regional radii of curvature, and non-invasively estimated LV end-diastolic pressure (EDP). Results SW velocities differed significantly between groups (p<0.001). The controls had the lowest SW velocities (4.02±0.97 m/s), whereas values between HT and HCM group were comparable (6.46±0.99 m/s vs. 7.00±2.10 m/s; p=0.738). Considering end-diastolic wall stress, HCM patients had the same SW velocity at lower wall stress compared to HT (Figure B), indicating higher myocardial stiffness in the HCM group. SW velocities normalized for wall stress indicated significantly different myocardial stiffness among all groups (p<0.001) (Figure C). In a multiple linear regression model, the underlying pathological substrate independently influenced SW velocity (beta 1.37, 95% CI (0.78–1.96); p<0.001), while wall stress did not significantly affect its value (p=0.479). Conclusions Our study demonstrated that SW elastography can detect differences in myocardial stiffness in hypertensive heart and hypertrophic cardiomyopathy. Additionally, our results suggest that SW velocity is dominated by underlying myocardial tissue properties. We hypothesize that differential changes in cardiomyocytes and/or the extracellular matrix contribute to the differential myocardial stiffening in different pathologic entities of LV hypertrophy. Thus, SW elastography could provide useful novel diagnostic information in the evaluation of LV hypertrophy. Figure A, B, C Funding Acknowledgement Type of funding source: None

2020

Proceedings of AI4Narratives - Workshop on Artificial Intelligence for Narratives in conjunction with the 29th International Joint Conference on Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial Intelligence (IJCAI 2020), Yokohama, Japan, January 7th and 8th, 2021 (online event due to Covid-19 outbreak)

Autores
Jorge, AM; Campos, R; Jatowt, A; Aizawa, A;

Publicação
AI4Narratives@IJCAI

Abstract

2020

Live software inspection and refactoring

Autores
Fernandes, S; Aguiar, A; Restivo, A;

Publicação
CEUR Workshop Proceedings

Abstract
With the increasing complexity of software systems, software developers would benefit from instant and continuous guidance about the system they are maintaining and evolving. Despite existing several solutions providing feedback and suggesting improvements, many tools require explicit invocation, leading to developers missing improvement opportunities, such as important refactorings, due to lost of train of thought. Therefore, to address these limitations, we propose an approach where developers receive instant and continuous feedback about their software systems. This guidance would include the detection of code smells and the suggestion of refactorings to improve the system, justified by relevant software quality metrics related to the recommendations. This research aims to improve the experience of developing and maintaining software systems by providing a live environment for continuous inspection and refactoring of software systems, that is informative, responsive, and tactically predictive, and thus helping developers to identify and solve quality problems in a quicker and better way.

2020

Integrative pathway enrichment analysis of multivariate omics data

Autores
Paczkowska, M; Barenboim, J; Sintupisut, N; Fox, NS; Zhu, H; Abd Rabbo, D; Mee, MW; Boutros, PC; Abascal, F; Amin, SB; Bader, GD; Beroukhim, R; Bertl, J; Boroevich, KA; Brunak, S; Campbell, PJ; Carlevaro Fita, J; Chakravarty, D; Chan, CWY; Chen, K; Choi, JK; Deu Pons, J; Dhingra, P; Diamanti, K; Feuerbach, L; Fink, JL; Fonseca, NA; Frigola, J; Gambacorti Passerini, C; Garsed, DW; Gerstein, M; Getz, G; Gonzalez Perez, A; Guo, Q; Gut, IG; Haan, D; Hamilton, MP; Haradhvala, NJ; Harmanci, AO; Helmy, M; Herrmann, C; Hess, JM; Hobolth, A; Hodzic, E; Hong, C; Hornshøj, H; Isaev, K; Izarzugaza, JMG; Johnson, R; Johnson, TA; Juul, M; Juul, RI; Kahles, A; Kahraman, A; Kellis, M; Khurana, E; Kim, J; Kim, JK; Kim, Y; Komorowski, J; Korbel, JO; Kumar, S; Lanzós, A; Lawrence, MS; Lee, D; Lehmann, KV; Li, S; Li, X; Lin, Z; Liu, EM; Lochovsky, L; Lou, S; Madsen, T; Marchal, K; Martincorena, I; Martinez Fundichely, A; Maruvka, YE; McGillivray, PD; Meyerson, W; Muiños, F; Mularoni, L; Nakagawa, H; Nielsen, MM; Park, K; Park, K; Pedersen, JS; Pich, O; Pons, T; Pulido Tamayo, S; Raphael, BJ; Reyes Salazar, I; Reyna, MA; Rheinbay, E; Rubin, MA; Rubio Perez, C; Sabarinathan, R; Sahinalp, SC; Saksena, G; Salichos, L; Sander, C; Schumacher, SE; Shackleton, M; Shapira, O; Shen, C; Shrestha, R; Shuai, S; Sidiropoulos, N; Sieverling, L; Sinnott Armstrong, N; Stein, LD; Stuart, JM; Tamborero, D; Tiao, G; Tsunoda, T; Umer, HM; Uusküla Reimand, L; Valencia, A; Vazquez, M; Verbeke, LPC; Wadelius, C; Wadi, L; Wang, J; Warrell, J; Waszak, SM; Weischenfeldt, J; Wheeler, DA; Wu, G; Yu, J; Zhang, J; Zhang, X; Zhang, Y; Zhao, Z; Zou, L; von Mering, C; Reimand, J;

Publicação
Nature Communications

Abstract
Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations. © 2020, The Author(s).

2020

Correction: Robot 2019: Fourth Iberian Robotics Conference (Adv. Intell. Sys. Comput. (2019), 1092 AISC, 10.1007/978-3-030-35990-4_55)

Autores
Silva, MF; Luís Lima, J; Reis, LP; Sanfeliu, A; Tardioli, D;

Publicação
Advances in Intelligent Systems and Computing

Abstract
Correction to: M. F. Silva et al. (Eds.): Robot 2019: Fourth Iberian Robotics Conference, AISC 1092, https://doi.org/10.1007/978-3-030-35990-4 The original version of the book was inadvertently published with incomplete information in the Organization page of the front matter, which has now been included. The book has been updated with the change. © Springer Nature Switzerland AG 2020.

  • 1153
  • 4201