Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2020

Exploring the Linkages Between the Internet of Things and Planning and Control Systems in Industrial Applications

Autores
Soares, R; Marques, A; Gomes, R; Guardão, L; Hernández, E; Rebelo, R;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
The potential of the Internet of Things (IoT) and other technologies in the realm of Industry 4.0 to generate valuable data for monitoring the performance of the production processes and the whole supply chain is well established. However, these large volumes of data can be used within planning and control systems (PCSs) to enhance real-time planning and decision-making. This paper conducts a literature review to envisage an overall system architecture that combines IoT and PCS for planning, monitoring and control of operations at the level of an industrial production process or at the level of its supply chain. Despite the extensive literature on IoT implementations, few studies explain the interactions between IoT and the components of PCS. It is expected that, with the increasing digitization of business processes, approaches with PCS and IoT become ubiquitous in the near future. © 2020, Springer Nature Switzerland AG.

2020

Deep Learning Applications in Agriculture: A Short Review

Autores
Santos, L; Santos, FN; Oliveira, PM; Shinde, P;

Publicação
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1

Abstract
Deep learning (DL) incorporates a modern technique for image processing and big data analysis with large potential. Deep learning is a recent tool in the agricultural domain, being already successfully applied to other domains. This article performs a survey of different deep learning techniques applied to various agricultural problems, such as disease detection/identification, fruit/plants classification and fruit counting among other domains. The paper analyses the specific employed models, the source of the data, the performance of each study, the employed hardware and the possibility of real-time application to study eventual integration with autonomous robotic platforms. The conclusions indicate that deep learning provides high accuracy results, surpassing, with occasional exceptions, alternative traditional image processing techniques in terms of accuracy.

2020

Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11, 2019, Revised Selected Papers, Part II

Autores
Sekerinski, E; Moreira, N; Oliveira, JN; Ratiu, D; Guidotti, R; Farrell, M; Luckcuck, M; Marmsoler, D; Campos, J; Astarte, T; Gonnord, L; Cerone, A; Couto, L; Dongol, B; Kutrib, M; Monteiro, P; Delmas, D;

Publicação
FM Workshops (2)

Abstract

2020

DaLi - Dynamic Logic, new trends and applications

Autores
Benevides, MRF; Madeira, A;

Publicação
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Abstract

2020

The Food Bank of Madrid: A Linear Model for Optimal Nutrition

Autores
Castanon, R; Campos, FA; Martinez, SD; Villar, J;

Publicação
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH

Abstract
This work proposes a mathematical linear programming model that addresses the food provisioning problem of the food bank of Madrid. It aims to determine the most appropriate weekly decisions to meet the macro-nutritional requirements of the beneficiaries of this social service, by minimizing the total cost considering third-party donations. The model has been applied to a realistic case study considering a sociological structure of beneficiaries categorized by age and gender and representing the first decile of incomes of the Spanish population. The demand of macronutrients is satisfied by means of nine different groups of food, used to provide some level of variability in the consumption patterns of the beneficiaries. The results provide insight on cost-cutting opportunities related to centralizing the decision-making process, indicating a 10% reduction both in provisioning costs and food quantities. This suggests that the proposed model might serve as a tool for designing new strategies for the provisioning or evaluation of economic and social support policies for the food bank of Madrid.

2020

Lower Bounds for Semi-adaptive Data Structures via Corruption

Autores
Dvorák, P; Loff, B;

Publicação
40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual Conference).

Abstract

  • 1138
  • 4202