2021
Autores
Miranda, P; Faria, JP; Correia, FF; Fares, A; Graça, R; Moreira, JM;
Publicação
SAC '21: The 36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, Republic of Korea, March 22-26, 2021
Abstract
Forecasts of the effort or delivery date can play an important role in managing software projects, but the estimates provided by development teams are often inaccurate and time-consuming to produce. This is not surprising given the uncertainty that underlies this activity. This work studies the use of Monte Carlo simulations for generating forecasts based on project historical data. We have designed and run experiments comparing these forecasts against what happened in practice and to estimates provided by developers, when available. Comparisons were made based on the mean magnitude of relative error (MMRE). We did also analyze how the forecasting accuracy varies with the amount of work to be forecasted and the amount of historical data used. To minimize the requirements on input data, delivery date forecasts for a set of user stories were computed based on takt time of past stories (time elapsed between the completion of consecutive stories); effort forecasts were computed based on full-time equivalent (FTE) hours allocated to the implementation of past stories. The MMRE of delivery date forecasting was 32% in a set of 10 runs (for different projects) of Monte Carlo simulation based on takt time. The MMRE of effort forecasting was 20% in a set of 5 runs of Monte Carlo simulation based on FTE allocation, much smaller than the MMRE of 134% of developers' estimates. A better forecasting accuracy was obtained when the number of historical data points was 20 or higher. These results suggest that Monte Carlo simulations may be used in practice for delivery date and effort forecasting in agile projects, after a few initial sprints. © 2021 ACM.
2021
Autores
Dias, JP; Restivo, A; Ferreira, HS;
Publicação
2021 IEEE/ACM 3RD INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING RESEARCH AND PRACTICES FOR THE IOT (SERP4IOT)
Abstract
Internet-of-Things (IoT) systems have spread among different application domains, from home automation to industrial manufacturing processes. The rushed development by competing vendors to meet the market demand of IoT solutions, the lack of interoperability standards, and the overall lack of a defined set of best practices have resulted in a highly complex, heterogeneous, and frangible ecosystem. Several works have been pushing towards visual programming solutions to abstract the underlying complexity and help humans reason about it. As these solutions begin to meet widespread adoption, their building blocks usually do not consider reliability issues. Node-RED, being one of the most popular tools, also lacks such mechanisms, either built-in or via extensions. In this work we present SHEN (Self-Healing Extensions for Node-RED) which provides 17 nodes that collectively enable the implementation of self-healing strategies within this visual framework. We proceed to demonstrate the feasibility and effectiveness of the approach using real devices and fault injection techniques.
2021
Autores
Murços, F; Fontes, T; Rossetti, RJF;
Publicação
IEEE International Smart Cities Conference, ISC2 2021, Manchester, United Kingdom, September 7-10, 2021
Abstract
Public opinion is nowadays a valuable data source for many sectors. In this study, we analysed the transportation sector using messages extracted from Twitter. Contrasting with the traditional surveying methods that are high-cost and inefficient used in transportation sector, social media are popular sources of crowdsensing. This work used BERT embeddings, an unsupervised pre-trained model released in 2018, to classify travel-related terms using tweets collected from three distinct cities: New York, London, and Melbourne. In order to understand if a simple model can have a good performance, we used unigrams. A list of 24 travel-related words was used to classify the messages. Popular words are train, walk, car, station, street, and avenue. Between 3% to 5% of all messages are classified as traffic-related, while along the typical working hours of the day the values is around 5-6%. A high model performance was obtained, with precision and accuracy higher than 0.80 and 0.90, respectively. The results are consistent for all the three cities assessed. © 2021 IEEE.
2021
Autores
Mendonça, H; Lima, J; Costa, P; Moreira, AP; dos Santos, FN;
Publicação
Optimization, Learning Algorithms and Applications - First International Conference, OL2A 2021, Bragança, Portugal, July 19-21, 2021, Revised Selected Papers
Abstract
The COVID-19 virus outbreak led to the need of developing smart disinfection systems, not only to protect the people that usually frequent public spaces but also to protect those who have to subject themselves to the contaminated areas. In this paper it is developed a human detector smart sensor for autonomous disinfection mobile robot that use Ultra Violet C type light for the disinfection task and stops the disinfection system when a human is detected around the robot in all directions. UVC light is dangerous for humans and thus the need for a human detection system that will protect them by disabling the disinfection process, as soon as a person is detected. This system uses a Raspberry Pi Camera with a Single Shot Detector (SSD) Mobilenet neural network to identify and detect persons. It also has a FLIR 3.5 Thermal camera that measures temperatures that are used to detect humans when within a certain range of temperatures. The normal human skin temperature is the reference value for the range definition. The results show that the fusion of both sensors data improves the system performance, compared to when the sensors are used individually. One of the tests performed proves that the system is able to distinguish a person in a picture from a real person by fusing the thermal camera and the visible light camera data. The detection results validate the proposed system.
2021
Autores
Lopes, CT; Ribeiro, C; Niccolucci, F; Rodrigues, IP; Antunes Freire, NM;
Publicação
SIGIR Forum
Abstract
2021
Autores
Buhrman, H; Loff, B; Patro, S; Speelman, F;
Publicação
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.