2025
Autores
Correia, PF; Coelho, A; Ricardo, M;
Publicação
Joint European Conference on Networks and Communications & 6G Summit, EuCNC/6G Summit 2025, Poznan, Poland, June 3-6, 2025
Abstract
2025
Autores
Silva, CAM; Bessa, RJ;
Publicação
APPLIED ENERGY
Abstract
The electrification of the transport sector is a critical element in the transition to a low-emissions economy, driven by the widespread adoption of electric vehicles (EV) and the integration of renewable energy sources (RES). However, managing the increasing demand for EV charging infrastructure while meeting carbon emission reduction targets is a significant challenge for charging station operators. This work introduces a novel carbon-aware dynamic pricing framework for EV charging, formulated as a chance-constrained optimization problem to consider forecast uncertainties in RES generation, load, and grid carbon intensity. The model generates day-ahead dynamic tariffs for EV drivers with a certain elastic behavior while optimizing costs and complying with a carbon emissions budget. Different types of budgets for Scope 2 emissions (indirect emissions of purchased electricity consumed by a company) are conceptualized and demonstrate the advantages of a stochastic approach over deterministic models in managing emissions under forecast uncertainty, improving the reduction rate of emissions per feasible day of optimization by 24 %. Additionally, a surrogate machine learning model is proposed to approximate the outcomes of stochastic optimization, enabling the application of state-of-the-art explainability techniques to enhance understanding and communication of dynamic pricing decisions under forecast uncertainty. It was found that lower tariffs are explained, for instance, by periods of higher renewable energy availability and lower market prices and that the most important feature was the hour of the day.
2025
Autores
Matos, T; Dinis, H; Faria, CL; Martins, MS;
Publicação
APPLIED OCEAN RESEARCH
Abstract
This study presents the development and testing of satellite antennas for the SONDA probe, an innovative deepsea monitoring system designed to be deployed by high-altitude balloons. The probe descends to the deep ocean, resurfaces, and transmits data while functioning as a drifter. The project faced unique design constraints, including the need for low-cost materials and lightweight construction for balloon deployment. These constraints ruled out traditional hermetic housings, necessitating alternative solutions for antenna protection. The work focused on custom ceramic patch antennas and their performance under various protective coatings, which affected the antennas' resonance and gain. Thinner layers effectively protected the antennas from high-pressure conditions and water ingress, maintaining functionality. Experiments on antenna height revealed optimal positioning above the water surface to minimize wave-induced signal interference. Hyperbaric chamber tests validated the mechanical integrity and functionality of the antennas under pressures equivalent to depths of 1500 m Antenna characterization techniques were employed in an anechoic chamber to validate antenna performance with the coating and to assess their correct operation after the hyperbaric tests. Field deployments demonstrated the antennas' capability to transmit data after diving. Challenges included communication delays, corrupted data, and mechanical vulnerabilities in materials. The findings emphasize the importance of rigorous mechanical design, material selection, and system optimization to ensure reliability in marine environments. This work advances the development of low-cost, lightweight, and modular probes for autonomous ocean monitoring, with potential applications in long-term drifter studies, real-time marine monitoring and oceanographic research.
2025
Autores
Souadda, LI; Halitim, AR; Benilles, B; Oliveira, JM; Ramos, P;
Publicação
Forecasting
Abstract
2025
Autores
Romeiro, AF; Cavalcante, CM; Silva, AO; Costa, JCWA; Giraldi, MTR; Guerreiro, A; Santos, JL;
Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
This study explores the application of machine learning algorithms to optimize the geometry of the plasmonic layer in a surface plasmon resonance photonic crystal fiber sensor. By leveraging the simplicity of linear regression ( LR) alongside the advanced predictive capabilities of the gradient boosted regression (GBR) algorithm, the proposed approach enables accurate prediction and optimization of the plasmonic layer's configuration to achieve a desired spectral response. The integration of LR and GBR with computational simulations yielded impressive results, with an R-2 exceeding 0.97 across all analyzed variables. Moreover, the predictive accuracy demonstrated a remarkably low margin of error, epsilon < 10(-15). This combination of methods provides a robust and efficient pathway for optimizing sensor design, ensuring enhanced performance and reliability in practical applications.
2025
Autores
Leal, F; Veloso, B; Malheiro, B; Burguillo, JC;
Publicação
EXPERT SYSTEMS
Abstract
Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.