Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Tânia Fontes é investigadora FCT no INESC TEC. A sua área de especialização é mobilidade urbana, centrando-se designadamente na avaliação dos impactos ambientais da mobilidade. Os seus interesses de investigação incluem as áreas de logística de última milha, avaliação de políticas de transporte, data science e desenho de sistemas de apoio à decisão. Tânia tem liderado diversos projetos de investigação na área da mobilidade de passageiros e cargas, em particular em espaço urbano (opti-MOVES e e-LOG). Além destes, tem colaborado activamente noutros projetos de investigação (ex. Seamless Mobility, SmartDecision, CIVITAS-ELAN), projetos de consultadoria (ex: VoxPop), e acções Cost (ex: ARTS, TEA, TRANSITS). Em 2016 esteve 6 meses em Pequim para estudar os impactes das politicas de transporte na qualidade do ar da cidade. Publica regularmente em revistas na área dos transportes e ambiente. Tânia é doutorada em Ciências Aplicadas ao Ambiente pela Universidade de Aveiro (2010). É também licenciada em Engenharia Informática (ISEP, 2007) e Engenharia do Ambiente (UFP, 2001).

Tópicos
de interesse
Detalhes

Detalhes

002
Publicações

2022

Real-Time Detection of Vehicle-Based Logistics Operations

Autores
Ribeiro, J; Tavares, J; Fontes, T;

Publicação
INTELLIGENT TRANSPORT SYSTEMS (INTSYS 2021)

Abstract

2022

Detection of vehicle-based operations from geolocation data

Autores
Tavares, J; Ribeiro, J; Fontes, T;

Publicação
Transportation Research Procedia

Abstract

2021

Forecasting of Urban Public Transport Demand Based on Weather Conditions

Autores
Correia, R; Fontes, T; Borges, JL;

Publicação
Advances in Intelligent Systems and Computing

Abstract
Weather conditions have a major impact on citizens’ daily mobility. Depending on weather conditions trips may be delayed, demand may be changed as well as the modal shift. These variations have a major impact on the use and operation of public transport, particularly in transport systems that operate close to capacity. However, the influence of weather conditions on transport demand is difficult to predict and quantify. For this purpose, an artificial neural network model – the Multilayer Perceptron – is used as a regression model to estimate the demand of urban public transport buses based on weather conditions. Transit bus ridership and weather conditions were collected along a year from a medium-size European metropolitan area (Oporto, Portugal) and linked under the assumption that individuals choose the travel mode based on the weather conditions that are observed during the departure hour, the hour before and two hours before. The transit ridership data were also labelled according to the hour, day of the week, month, and whether there was a strike and/or holiday or not. The results demonstrate that it is possible to predict the demand of public transport buses using the weather conditions observed two hours before with low error for the entire network (MAE = 143 and RMSE = 322). The use of weather conditions allow to decreases the error of the prediction by ~8% for the entire network. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

2021

Are BERT embeddings able to infer travel patterns from Twitter efficiently using a unigram approach?

Autores
Murços, F; Fontes, T; Rossetti, RJF;

Publicação
IEEE International Smart Cities Conference, ISC2 2021, Manchester, United Kingdom, September 7-10, 2021

Abstract

2020

Design of a Route-Planner for Urban Public Transport, Promoting Social Inclusion

Autores
Dias, R; Fontes, T; Galvao, T;

Publicação
INTELLIGENT TRANSPORT SYSTEMS

Abstract
People that do not have access to the transport system and therefore, a facilitated access to goods and services essential to daily life, can be regarded as transport-related social excluded. This is a big issue, namely for groups of people that have physical, sensorial and/or cognitive limitations. This paper provides guidelines to design route planners for socially excluded groups, by promoting social inclusion in public transportation. For this purpose, a set of mock-up user-interfaces of an inclusive inter-modal route planning application were developed. These interfaces will deliver ready availability of information about infrastructures and other journey related data. © 2020, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

Teses
supervisionadas

2022

Bus fleet transition: assessment of the economic impacts

Autor
João Fernandes

Instituição
UP-FEUP

2022

Environmental assessment of parcel delivery: from data sources to data analysis

Autor
Diogo Filipe Miguel

Instituição
UP-FEUP

2022

Vehicle allocation In logistic processes

Autor
Gustavo Macedo Torres

Instituição
UP-FEUP

2022

Definition of a conceptual model to asses the environmental sustainability of parcel delivery

Autor
Vasco Silva

Instituição
IES_Outra

2022

Definition of a conceptual model to asses the environmental sustainability of parcel delivery: the case of fashion industry

Autor
Pedro Aidos

Instituição
UP-FEUP