Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Ricardo Silva
  • Cluster

    Energia
  • Cargo

    Investigador
  • Desde

    07 fevereiro 2018
006
Publicações

2021

Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context

Autores
Silva, R; Alves, E; Ferreira, R; Villar, J; Gouveia, C;

Publicação
ENERGIES

Abstract
Power systems rely on ancillary services (ASs) to ensure system security and stability. Until recently, only the conventional power generation resources connected to the transmission grids were allowed to provide these ASs managed by the transmission system operators (TSOs), while distribution system operators (DSOs) had a more passive role, focused on guaranteeing distribution capacity to bring power to final consumers with enough quality. Now, with the decarbonization, digitalization and decentralization processes of the electrical networks, the growing integration of distributed energy resources (DERs) in distribution grids are displacing conventional generation and increasing the complexity of distribution networks' operation, requiring the implementation of new active and coordinated management strategies between TSOs and DSOs. In this context, DERs are becoming potential new sources of flexibility for both TSOs and DSOs in helping to manage the power system. This paper proposes a systematic characterization of both traditional and potentially new ASs for TSOs, and newly expected DSO local system services to support the new distribution grid operation paradigm, reviewing, in addition, the main TSO-DSO coordination mechanisms.

2021

Optimal Power Flow Solution for Distribution Networks using Quadratically Constrained Programming and McCormick Relaxation Technique

Autores
Javadi, MS; Gouveia, CS; Carvalho, LM; Silva, R;

Publicação
2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)

Abstract

2021

INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE ON SCADA DATA

Autores
Almeida, B; Santos, RJ; Louro, M; Santos, PM; Ribeiro, AF; Bessa, RJ; Gouveia, C; Andrade, JR; Silva, RE; Rocha, CN; Viana, JP;

Publicação
CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution

Abstract

2020

Functional insight into the glycosomal peroxiredoxin of Leishmania

Autores
Castro, H; Rocha, MI; Silva, R; Oliveira, F; Gomes Alves, AG; Cruz, T; Duarte, M; Tomas, AM;

Publicação
ACTA TROPICA

Abstract
Glycosomes of trypanosomatids are peroxisome-like organelles comprising unique metabolic features, among which the lack of the hallmark peroxisomal enzyme catalase. The absence of this highly efficient peroxidase from glycosomes is presumably compensated by other antioxidants, peroxidases of the peroxiredoxin (PRX) family being the most promising candidates for this function. Here, we follow on this premise and investigate the product of a Leishmania infantum gene coding for a putative glycosomal PRX (LigPRX). First, we demonstrate that LigPRX localizes to glycosomes, resorting to indirect immunofluorescence analysis. Second, we prove that purified recombinant LigPRX is an active peroxidase in vitro. Third, we generate viable LigPRX-depleted L. infantum promastigotes by classical homologous recombination. Surprisingly, phenotypic analysis of these knockout parasites revealed that promastigote survival, replication, and protection from oxidative and nitrosative insults can proceed normally in the absence of LigPRX. Noticeably, we also witness that LigPRX-depleted parasites can infect and thrive in mice to the same extent as wild type parasites. Overall, by disclosing the dispensable character of the glycosomal peroxiredoxin in L. infantum, this work excludes this enzyme from being a key component of the glycosomal hydroperoxide metabolism and contemplates alternative players for this function.