Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Pedro Macedo holds a M.Sc. degree in Electrical and Computer Engineering with specialisation in energy systems, from the Faculty of Engineering of the University of Porto (FEUP), since 2014.

Since then he develops his activity as a R&D in the area of System Planning and Reliability at the Centre for Power and Energy Systems (CPES), where he works in research projects in partnership with industry. He has been focusing his activity in the area of data mining and in the forecast models development applied to energy electrical systems.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Pedro Miguel Macedo
  • Cluster

    Energia
  • Cargo

    Investigador
  • Desde

    06 abril 2015
007
Publicações

2022

Identification of Typical and Anomalous Patterns in Electricity Consumption

Autores
Fidalgo, JN; Macedo, P;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Nontechnical losses in electricity distribution networks are often associated with a countries’ socioeconomic situation. Although the amount of global losses is usually known, the separation between technical and commercial (nontechnical) losses will remain one of the main challenges for DSO until smart grids become fully implemented and operational. The most common origins of commercial losses are energy theft and deliberate or accidental failures of energy measuring equipment. In any case, the consequences can be regarded as consumption anomalies. The work described in this paper aims to answer a request from a DSO, for the development of tools to detect consumption anomalies at end-customer facilities (HV, MV and LV), invoking two types of assessment. The first consists of the identification of typical patterns in the set of consumption profiles of a given group or zone and the detection of atypical consumers (outliers) within it. The second assessment involves the exploration of the load diagram evolution of each specific consumer to detect changes in the consumption pattern that could represent situations of probable irregularities. After a representative period, typically 12 months, these assessments are repeated, and the results are compared to the initial ones. The eventual changes in the typical classes or consumption scales are used to build a classifier indicating the risk of anomaly.

2021

Estimation of the Global Amount of Mandatory Investments for Distribution Network Expansion Planning

Autores
MacEdo P.M.; Fidalgo J.N.; Saraiva J.T.;

Publicação
2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings

Abstract

2020

Assessing the Impact of Investments in Distribution Planning

Autores
MacEdo, P; Fidalgo, JN; Tome Saraiva, J;

Publicação
International Conference on the European Energy Market, EEM

Abstract