Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Pedro Campos
  • Cargo

    Investigador Sénior
  • Desde

    01 janeiro 2010
  • Nacionalidade

    Portugal
  • Contactos

    +351220402963
    pedro.campos@inesctec.pt
001
Publicações

2023

Data Science, Statistics, and Civic Statistics: Education for a Fast Changing World

Autores
Ridgway, J; Campos, P; Biehler, R;

Publicação
Statistics for Empowerment and Social Engagement: Teaching Civic Statistics to Develop Informed Citizens

Abstract
What is the relationship between data science, statistics, and Civic Statistics? Are they symbiotic, or are they in conflict? A graphic on the homepage of the American Statistical Association (https://www.amstat.org/ASA/about/home.aspx?hkey=6a706b5c-e60b-496b-b0c6-195c953ffdbc) reads BIGTENT statistics+data science, indicating their intended direction of travel—statistics and data science need to live together. Products of data science (including social media) have transformed modern life. We outline the idea of disruptive socio-technical systems (DST)—new social practices that have been made possible by innovative technologies, and which have profound social consequences—and we point to some examples of technologies that are, or have capacity to facilitate DST. Civic Statistics aims to address pressing social issues, and data science has created new concerns and also new approaches to work on social issues. Here, we argue that this should go beyond simply addressing known problems, and should include empowering citizens to engage in discussions about our possible futures, including the regulation of potential and actual DST. These are exciting times; there are new approaches to knowing about and understanding the world, many of them associated with data science, and students need to engage with these important epistemological issues as a key element in Civic Statistics skills. Here, we relate features of data science to features of Civic Statistics, and to dimensions of knowledge relevant to Civic Statistics. From the viewpoint of Civic Statistics, we argue that we have a responsibility to prepare students for their roles as spectators (understanding the nature and potential of data science products in creating DST), and as referees (having a political voice about which DST are acceptable and unacceptable), and as players (engaging with data science for their own and others’ benefit). We elaborate on the skills needed for these roles. We argue that citizens should use ideas and tools from data science to improve their lives and their environments. © Springer Nature Switzerl and AG 2022.

2023

Project-Based Learning with a Social Impact: Connecting Data Science Movements, Civic Statistics, and Service-Learning

Autores
Zejnilovic, L; Campos, P;

Publicação
Statistics for Empowerment and Social Engagement: Teaching Civic Statistics to Develop Informed Citizens

Abstract
Ever since there has been an organized collection and use of data for informing decision making, there has been a debate about the extent to which these data have been put to the best use for improving social welfare in terms of general well-being of a community or an entire society. This chapter offers a contribution to that debate, showing how different facets of civic statistics can be translated into action that delivers social impact. We first introduce data movements and how they emerged as a response to the unmet need for data science services to scale social impact of nonprofit and governmental organizations. These movements focused on feasible hands-on projects which are simultaneously educational, impactful, and scalable. Their success is notable, and their operational model applicable in the context of formal educational organizations, as we show using two exemplary cases. The cases offer insights about how organizations can engage with society through civic action and applied data science to create new academic and training programs. Our intention is to share the lessons learned from the data movements and their interactions with educational institutions, also in the context of service-learning, to inspire others to create exciting, engaging educational programs with lasting social impact. © Springer Nature Switzerl and AG 2022.

2023

Exploring Climate Change Data with R

Autores
Guimarães, N; Vehkalahti, K; Campos, P; Engel, J;

Publicação
Statistics for Empowerment and Social Engagement: Teaching Civic Statistics to Develop Informed Citizens

Abstract
Climate change is an existential threat facing humanity and the future of our planet. The signs of global warming are everywhere, and they are more complex than just the climbing temperatures. Climate data on a massive scale has been collected by various scientific groups around the globe. Exploring and extracting useful knowledge from large quantities of data requires powerful software. In this chapter we present some possibilities for exploring and visualising climate change data in connection with statistics education using the freely accessible statistical programming language R together with the computing environment RStudio. In addition to the visualisations, we provide annotated references to climate data repositories and extracts of our openly published R scripts for encouraging teachers and students to reproduce and enhance the visualisations. © Springer Nature Switzerl and AG 2022.

2023

Data Sets: Examples and Access for Civic Statistics

Autores
Teixeira, S; Campos, P; Trostianitser, A;

Publicação
Statistics for Empowerment and Social Engagement: Teaching Civic Statistics to Develop Informed Citizens

Abstract
Citizens are more and more encouraged to participate in public policy decision processes and, therefore, critical questions regarding our lives are asked every day. Informed citizens need access to data, and knowledge in order to explore, understand, and reason about information of a multivariate nature; it is not obvious how to access such data, or how to work with them. Educators face the challenge of adopting new approaches, and grasping new opportunities in order to support the development of students into informed citizens as adults. Educators often do not have time to locate information sources; moreover, it is a challenge to exploit the possibilities of open data wisely. This chapter points to data sets we have found valuable in teaching Civic Statistics; data must be authentic, and reflect the complexities of data used to inform decision making about social issues (whose features are explained in Chap. 2). Topics include refugees, malnutrition, and climate change. We provide enough details so teachers can locate and employ these data sets, or similar ones, as part of regular instruction. Information is made accessible using the innovative tool CivicStatMap, developed to provide access to teaching materials, along with data and analysis tools, including tools to support data visualisation. © Springer Nature Switzerl and AG 2022.

2023

Lesson Plan Approaches: Tasks That Motivate Students to Think

Autores
Trostianitser, A; Teixeira, S; Campos, P;

Publicação
Statistics for Empowerment and Social Engagement: Teaching Civic Statistics to Develop Informed Citizens

Abstract
In recent years, it has been increasingly necessary for citizens to understand real life statistical data—an ability that is rarely taught in schools, where the majority of tasks in statistics classes contain fictional data without context and make no demands on students to explore or explain. Since most real-world phenomena are multivariate (See Chap. 2), there is a need to develop students’ abilities dealing with complex data and stories they encounter in the media, in order to help prepare them for informed citizenship. The ProCivicStat project has developed materials to support teaching and learning, in the form of detailed lesson plans; a large repository of resources (http://iase-web.org/islp/pcs/) (in several languages) is freely available. This chapter describes our approach to the development of teaching resources. It introduces our storytelling approach in lesson plans, where we use real data in context to encourage students to explore and understand complex data, produce narrative accounts, and often make recommendations about appropriate social actions. The structure of this chapter is as follows: we start with a brief introduction on problems in most tasks commonly encountered in statistics education, and the need for real data in statistics teaching (Sect. 7.1), followed by the presentation of the milestones that are important for creation of lesson plans (Sect. 7.2), and after that we address the use of real data and our storytelling approach (Sect. 7.3). In Sect. 7.4 we talk briefly about empowering teachers (Sect. 7.4) and describe the teachers’ version of the lesson plan (Sect. 7.5). In Sect. 7.6 we present the guidelines for designing student activities, then proceed with an excerpt of a lesson plan to exemplify products of the proposed guidelines (Sect. 7.7). We then highlight the visualization tools that help promote the data exploration step (Sect. 7.8), and finish with a conclusion (Sect. 7.9). © Springer Nature Switzerl and AG 2022.

Teses
supervisionadas

2022

Barriers to omnichannel strategies implementation: The NOS SGPS case

Autor
Diana Marlene Ribeiro da Rocha

Instituição
UP-FEP

2022

Research on the maturity of portuguese companies in the adoption of artificial intelligence Applications

Autor
João Maria Castelo dos Santos Rebelo Duarte

Instituição
UP-FEP

2022

Shopbots: um estudo exploratório dos Comparadores de Preços

Autor
Bárbara Sofia Louças Fernandes

Instituição
UP-FEP

2022

Predicting the volatility and liquidity of cryptocurrency futures contracts using its maturity

Autor
André Amorim Couto

Instituição
UP-FEP

2022

Business value creation in SCM: Influence of blockchain, data quality and big data analytics.

Autor
Kerley de Lourdes Silva

Instituição
UP-FEP