Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Olga Klyagina
  • Cargo

    Investigador
  • Desde

    18 janeiro 2022
  • Nacionalidade

    Rússia
  • Centro

    Sistemas de Energia
  • Contactos

    +351222094000
    olga.klyagina@inesctec.pt
Publicações

2025

Graph Neural Networks for Fault Location in Large Photovoltaic Power Plants

Autores
Klyagina O.; Silva C.G.; Silva A.S.; Guedes T.; Andrade J.R.; Bessa R.J.;

Publicação
2025 IEEE Kiel Powertech Powertech 2025

Abstract
A fast response to faults in large-scale photovoltaic power plants (PVPPs), which can occur on hundreds of components like photovoltaic panels and inverters, is fundamental for maximizing energy generation and reliable system operation. This work proposes using a Graph Neural Network (GNN) combined with a digital twin for synthetic fault data scenario generation for fault location in PVPPs. It shows that GNN can adapt to system changes without requiring model retraining, thus offering a scalable solution for the real operating PVPPs, where some parts of the system may be disconnected for maintenance. The results for a real PVPP show the GNN outperforms baseline models, especially in larger topologies, achieving up to twice the accuracy in a fault location task. The GNN's adaptability to topology changes was tested on the simulated reconfigured systems. A decrease in performance was observed, and its value depends on the complexity of the original training topology. It can be mitigated by using several system reconfigurations in the training set.

2024

ML-assistant for human operators using alarm data to solve and classify faults in electrical grids

Autores
Campos, V; Klyagina, O; Andrade, JR; Bessa, RJ; Gouveia, C;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Nowadays, human operators at control centers analyze a large volume of alarm information during outage events and must act fast to restore the service. To assist operator decisions this work proposes novel machine learning-based functions aiming to: (a) classify the complexity of a fault occurrence (Occurrences Classifier) and its cause (Fault Cause Classifier) based on its alarm events; (b) provide fast insights to the operator on how to solve it (Data2Actions). The Occurrences Classifier takes alarm information of an occurrence and classifies it as a simpleor complexoccurrence, while the Fault Cause Classifier predicts the cause class of MV lines faults. The Data2Actions takes a sequence of alarm information from the occurrence and suggests a more adequate sequence of switching actions to isolate the fault section. These algorithms were tested on real data from a Distribution System Operator and showed: (a) an accuracy of 86% for the Data2Actions, (b) an accuracy of 68% for the Occurrences Classifier, and (c) an accuracy of 74% for the Fault Cause Classifier. It also proposes a new representation for SCADA event log data using graphs, which can help human operators identify infrequent alarm events or create new features to improve model performance.

2024

Improving Very Short-Term Wind Power Predictability by Strategically Placing Weather Stations

Autores
Klyagina O.; Camara D.P.; Bessa R.J.;

Publicação
Proceedings - 24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024

Abstract
This study aims to improve the accuracy of wind power generation forecasting by selecting the potential locations for weather stations, which serve as crucial data sources for wind predictions. The proposed method is based on using Shapley values. First, they are assigned to stations that are already available in the region based on their contribution to forecasting error. Second, the values are interpolated to cover the area of interest. We test the hypothesis that taking weather measurements in areas with negative Shapley values leads to a decrease in the error of forecasting the volume of wind power generation. We estimate the method's impact on forecasting error by using long short-term memory neural network and linear regression with quadratic penalization. The results of this proof-of-concept study indicate that it is possible to improve the short-term wind power forecasts using additional weather observations in the selected regions. The future research should be dedicated to the expansion of the case study area to other locations, including offshore power plants.