Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Liliana Patrícia Soares
  • Cargo

    Assistente de Investigação
  • Desde

    23 janeiro 2019
Publicações

2023

Measurement of Paracetamol Concentration Using an Erbium-Doped Fiber Ring Cavity

Autores
Soares, L; Perez Herrera, RA; Novais, S; Ferreira, A; Silva, S; Frazao, O;

Publicação
PHOTONICS

Abstract
Process Analytical Technology (PAT) has been increasingly used in the pharmaceutical industry to monitor essential parameters in real-time during pharmaceutical processes. The concentration of Active Pharmaceutical Ingredients (APIs), such as paracetamol, is one of these parameters, and controlling its variations allows for optimization of the production process. In this study, a refractometric sensor, implemented by an interrogation system based on an Erbium-Doped Fiber Ring Cavity (EDFRC), was presented and experimentally demonstrated. The Cavity Ring proposed included a 1 x 3 coupler. One port of the coupler was used to increase the optical power of the system through a Fiber Bragg Grating (FBG), and the other two ports were used as sensing head and reference. The sensor detected variations of paracetamol concentration with a sensitivity of [(-1.00 +/- 0.05) x 10(-3)] nW/(g/kg) and a resolution of 5.53 g/kg. The results demonstrate the potential of this technology as a possible non-invasive PAT tool.

2023

Erbium-doped fiber ring cavity for the measurement of refractive index variations

Autores
Perez Herrera, RA; Soares, L; Novais, S; Frazão, O; Silva, S;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract

2023

Measurement of paracetamol concentration using a fiber laser system

Autores
Soares, L; Perez-Herrera, RA; Novais, S; Ferreira, A; Frazao, O; Silva, S;

Publicação
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG

Abstract
A linear fiber laser system for measurements of paracetamol concentration is experimentally demonstrated. The cavity is based on a fiber loop mirror and an FBG centered at 1567.8 nm. The sensing head corresponds to a refractometric sensor, whose which principle of operation is based on Fresnel reflection in the fiber tip (FBG side). The system works at detected variations of paracetamol concentrations with a sensitivity of [(8.74 +/- 0.34) x10(-5)] mu W/(g/kg) and a resolution of 2.77 g/kg. The results prove that the fiber laser system could be an asset for processing industries, specifically for non-invasive and real-time measurements of concentration.

2023

Paracetamol concentration-sensing scheme based on a linear cavity fiber laser configuration

Autores
Soares, L; Perez Herrera, RA; Novais, S; Ferreira, A; Fraza, O; Silva, S;

Publicação
OPTICAL FIBER TECHNOLOGY

Abstract
A paracetamol concentration-sensing scheme based on a linear cavity fiber laser configuration is demonstrated experimentally. The laser cavity has a fiber sensor at one end, that allows refractive index measurements. The refractometer consists of a cleaved fiber tip combined with an FBG functioning as a reflecting mirror. The combination of a fiber loop mirror at the other end allows to reflect all the light from the FBG and refractometer, forming a linear cavity. By measuring the intensity variation of the Fresnel reflection at the fiber-to-liquid interface, the measured concentration is linear and have a concentration sensitivity of [( - 8.74 & PLUSMN; 0.34) x 10-5 ] & mu;W/(g/kg), over a range of 52.61 to 219.25 g/kg, and with a resolution of 2.77 g/kg. The results obtained present high stability and prove the potential of the fiber laser system to performed realtime measurements of concentration, in a non-invasive way.

2023

Refractive Index Measurements of Ethanol-Water Binary Liquid Solutions Using a Graded-Index Fiber Tip Sensor

Autores
Soares, L; Cunha, C; Novais, S; Ferreira, A; Frazao, O; Silva, S;

Publicação
IEEE SENSORS LETTERS

Abstract
The refractometric analysis of ethanol-water mixtures is hampered because this type of binary solution does not present a linear behavior. In this letter, a multimode graded-index fiber (GIF) tip sensor for the measurement of ethanol in binary liquid solutions of ethanol-water is proposed. The proof is fabricated by the fusion-splicing of a 500 mu m GIF to a single-mode fiber (SMF), and it operates as a refractometric sensor in reflection. To evaluate the prove potential to detected ethanol variations, samples of ethanol-water mixtures were measured at different temperatures (20 degrees C-60 degrees C). The samples have different %(v/v) of ethanol, in a range between 0% and 100%.