Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Professor da FEUP - Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia e Gestão Industrial

Investigador do INESC Porto

Tópicos
de interesse
Detalhes

Detalhes

010
Publicações

2022

A Two-Stage Method to Solve Location-Routing Problems Based on Sectorization

Autores
Teymourifar, A; Rodrigues, AM; Ferreira, JS; Lopes, C; Oliveira, C; Romanciuc, V;

Publicação
INNOVATIONS IN INDUSTRIAL ENGINEERING

Abstract

2022

An Integer Programming Approach to Sectorization with Compactness and Equilibrium Constraints

Autores
Romanciuc, V; Lopes, C; Teymourifar, A; Rodrigues, AM; Ferreira, JS; Oliveira, C; Ozturk, EG;

Publicação
INNOVATIONS IN INDUSTRIAL ENGINEERING

Abstract

2022

A Comparison Between Optimization Tools to Solve Sectorization Problem

Autores
Teymourifar, A; Rodrigues, AM; Ferreira, JS; Lopes, C;

Publicação
Lecture Notes in Networks and Systems

Abstract
In sectorization problems, a large district is split into small ones, usually meeting certain criteria. In this study, at first, two single-objective integer programming models for sectorization are presented. Models contain sector centers and customers, which are known beforehand. Sectors are established by assigning a subset of customers to each center, regarding objective functions like equilibrium and compactness. Pulp and Pyomo libraries available in Python are utilised to solve related benchmarks. The problems are then solved using a genetic algorithm available in Pymoo, which is a library in Python that contains evolutionary algorithms. Furthermore, the multi-objective versions of the models are solved with NSGA-II and RNSGA-II from Pymoo. A comparison is made among solution approaches. Between solvers, Gurobi performs better, while in the case of setting proper parameters and operators the evolutionary algorithm in Pymoo is better in terms of solution time, particularly for larger benchmarks. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2022

An Application of Preference-Inspired Co-Evolutionary Algorithm to Sectorization

Autores
Öztürk, E; Rocha, P; Sousa, F; Lima, M; Rodrigues, AM; Ferreira, JS; Nunes, AC; Lopes, C; Oliveira, C;

Publicação
Lecture Notes in Mechanical Engineering

Abstract

2021

A Comparison Between Simultaneous and Hierarchical Approaches to Solve a Multi-Objective Location-Routing Problem

Autores
Teymourifar, A; Rodrigues, AM; Ferreira, JS;

Publicação
AIRO Springer Series

Abstract

Teses
supervisionadas

2021

High Power Efficiency, Wideband Microwave Power Amplifier Design Using Low-Cost Packaging and Integration Techniques for Emerging Transmitter Systems

Autor
Hassan Safdary

Instituição
UP-FEUP

2021

Multi-Modal Tasking for Skin Lesion Classification using Deep Neural Networks

Autor
Rafaela Garrido Ribeiro de Carvalho

Instituição
UP-FEUP

2021

O impacto dos fatores psicológicos que surgiram com a crise do COVID-19 nas atitudes e comportamentos dos consumidores

Autor
Bárbara Gonçalves de Sousa

Instituição
UP-FEP

2021

Melhoria da Gestão de Produção de Remates

Autor
SOFIA PORFIRIO PIRES DE ARAÚJO

Instituição
IPP-ISEP

2021

Realidade aumentada voltada para a educação e treinamento

Autor
Pedro Viegas Júnior

Instituição