Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre
Download foto HD

Sobre

José Boaventura-Cunha é Engenheiro em Eletrónica e Telecomunicações pela Universidade de Aveiro (1985) e Doutorado em Engenharia Electrotécnica e de Computadores pela UTAD-Universidade de Trás-os-Montes e Alto Douro, Portugal (2002). Atualmente exerce funções de Professor Associado com Agregação na Escola de Ciências e Tecnologia da UTAD.

Desde 2012 é membro do CRIIS- Centre for Robotics in Industry and Intelligent Systems no INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência e é Coordenador do polo INESC TEC na UTAD.

Os seus interesses de investigação relacionam-se com as áreas de Instrumentação, modelação e controlo aplicados a processos industriais e agro-florestais.

Tópicos
de interesse
Detalhes

Detalhes

008
Publicações

2021

Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems

Autores
Aguiar, AS; dos Santos, FN; Sobreira, H; Cunha, JB; Sousa, AJ;

Publicação
Robotics and Autonomous Systems

Abstract

2021

Reconfigurable Grasp Planning Pipeline with Grasp Synthesis and Selection Applied to Picking Operations in Aerospace Factories

Autores
de Souza, JPC; Costa, CM; Rocha, LF; Arrais, R; Moreira, AP; Pires, EJS; Boaventura Cunha, J;

Publicação
Robotics and Computer-Integrated Manufacturing

Abstract

2021

Bridging Theory to Practice: Feedforward and Cascade Control with TCLab Arduino Kit

Autores
de Moura Oliveira, PB; Hedengren, JD; Boaventura Cunha, J;

Publicação
Lecture Notes in Electrical Engineering - CONTROLO 2020

Abstract

2021

Bringing Semantics to the Vineyard: An Approach on Deep Learning-Based Vine Trunk Detection

Autores
Aguiar, AS; Monteiro, NN; dos Santos, FN; Pires, EJS; Silva, D; Sousa, AJ; Boaventura Cunha, J;

Publicação
Agriculture

Abstract
The development of robotic solutions in unstructured environments brings several challenges, mainly in developing safe and reliable navigation solutions. Agricultural environments are particularly unstructured and, therefore, challenging to the implementation of robotics. An example of this is the mountain vineyards, built-in steep slope hills, which are characterized by satellite signal blockage, terrain irregularities, harsh ground inclinations, and others. All of these factors impose the implementation of precise and reliable navigation algorithms, so that robots can operate safely. This work proposes the detection of semantic natural landmarks that are to be used in Simultaneous Localization and Mapping algorithms. Thus, Deep Learning models were trained and deployed to detect vine trunks. As significant contributions, we made available a novel vine trunk dataset, called VineSet, which was constituted by more than 9000 images and respective annotations for each trunk. VineSet was used to train state-of-the-art Single Shot Multibox Detector models. Additionally, we deployed these models in an Edge-AI fashion and achieve high frame rate execution. Finally, an assisted annotation tool was proposed to make the process of dataset building easier and improve models incrementally. The experiments show that our trained models can detect trunks with an Average Precision up to 84.16% and our assisted annotation tool facilitates the annotation process, even in other areas of agriculture, such as orchards and forests. Additional experiments were performed, where the impact of the amount of training data and the comparison between using Transfer Learning and training from scratch were evaluated. In these cases, some theoretical assumptions were verified.

2021

Cloud-Based Framework for Robot Operation in Hospital Environments

Autores
Fonseca Ferreira, NM; Boaventura Cunha, J;

Publicação
Lecture Notes in Electrical Engineering - CONTROLO 2020

Abstract

Teses
supervisionadas

2020

Localization and Mapping based on Semantic and Multi-Layer Maps Concepts

Autor
André Silva Pinto de Aguiar

Instituição
UP-FEUP

2018

Modelos e Sistemas de controlo preditivo aplicados à industria de base florestal

Autor
Tatiana de Fátima Martins Pinho

Instituição
UTAD

2017

Modelos e Sistemas de controlo preditivo aplicados à industria de base florestal

Autor
Tatiana de Fátima Martins Pinho

Instituição

2016

ANÁLISE COMPUTACIONAL DA CONDUÇÃO DE CALOR EM DOMÍNIOS BIDIMENSIONAIS

Autor
Luís Adriano Preto Mendes Afonso

Instituição
UTAD

2016

ANÁLISE DINÂMICA DE ESCOAMENTO DE FLUÍDOS

Autor
Maria Manuela Jorge Martins Ferreira

Instituição
UTAD