Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

José Boaventura-Cunha é Engenheiro em Eletrónica e Telecomunicações pela Universidade de Aveiro (1985) e Doutorado em Engenharia Electrotécnica e de Computadores pela UTAD-Universidade de Trás-os-Montes e Alto Douro, Portugal (2002). Atualmente exerce funções de Professor Catedrático na Escola de Ciências e Tecnologia da UTAD.

Desde 2012 é membro do CRIIS- Centre for Robotics in Industry and Intelligent Systems no INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência e é Coordenador do polo INESC TEC na UTAD.

Os seus interesses de investigação relacionam-se com as áreas de Instrumentação, modelação e controlo aplicados a processos industriais e agro-florestais.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    José Boaventura
  • Cargo

    Investigador Coordenador
  • Desde

    01 junho 2012
015
Publicações

2026

A review of visual perception for robotic bin-picking

Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Figueiredo, D; Souza, JP;

Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
Robotic bin-picking is a critical operation in modern industry, which is characterised by the detection, selection, and placement of items from a disordered and cluttered environment, which can be boundary limited or not, e.g. bins, boxes or containers. In this context, perception systems are employed to localise, detect and estimate grasping points. Despite the considerable progress made, from analytical approaches to recent deep learning methods, challenges still remain. This is evidenced by the growing innovation proposing distinct solutions. This paper aims to review perception methodologies developed since 2009, providing detailed descriptions and discussions of their implementation. Additionally, it presents an extensive study, detailing each work, along with a comprehensive overview of the advancements in bin-picking perception.

2025

Pruning End-Effectors State of the Art Review

Autores
Oliveira, F; Tinoco, V; Valente, A; Pinho, T; Cunha, JB; Santos, FN;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT I

Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning.

2025

Object segmentation dataset generation framework for robotic bin-picking: Multi-metric analysis between results trained with real and synthetic data

Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Pires, EJS; Souza, JP;

Publicação
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
The implementation of deep learning approaches based on instance segmentation data remains a challenge for customized scenarios, owing to the time-consuming nature of acquiring and annotating real-world instance segmentation data, which requires a significant investment of semi-professional user labour. Obtaining high-quality labelled data demands expertise and meticulous attention to detail. This requirement can significantly impact the overall implementation process, adding to the complexity and resource requirements of customized scenarios with diverse objects. The proposed work addresses the challenge of generating labelled data for large-scale robotic bin-picking datasets by proposing an easy-to-use automated framework designed to create customized data with accurate labels from CAD models. The framework leverages a photorealistic rendering engine integrated with physics simulation, minimizing the gap between synthetic and real-world data. Models trained using the synthetic data generated by this framework achieved an Average Precision of 86.95%, comparable to the performance of models trained on real-world datasets. Furthermore, this paper provides a comprehensive multi-metric analysis across diverse objects representing distinct industrial applications, including naval, logistics, and aerospace domains. The evaluation also includes the use of three distinct instance segmentation networks, alongside a comparative analysis of the proposed approach against two generative model techniques.

2024

Enhancing Grapevine Node Detection to Support Pruning Automation: Leveraging State-of-the-Art YOLO Detection Models for 2D Image Analysis

Autores
Oliveira, F; da Silva, DQ; Filipe, V; Pinho, TM; Cunha, M; Cunha, JB; dos Santos, FN;

Publicação
SENSORS

Abstract
Automating pruning tasks entails overcoming several challenges, encompassing not only robotic manipulation but also environment perception and detection. To achieve efficient pruning, robotic systems must accurately identify the correct cutting points. A possible method to define these points is to choose the cutting location based on the number of nodes present on the targeted cane. For this purpose, in grapevine pruning, it is required to correctly identify the nodes present on the primary canes of the grapevines. In this paper, a novel method of node detection in grapevines is proposed with four distinct state-of-the-art versions of the YOLO detection model: YOLOv7, YOLOv8, YOLOv9 and YOLOv10. These models were trained on a public dataset with images containing artificial backgrounds and afterwards validated on different cultivars of grapevines from two distinct Portuguese viticulture regions with cluttered backgrounds. This allowed us to evaluate the robustness of the algorithms on the detection of nodes in diverse environments, compare the performance of the YOLO models used, as well as create a publicly available dataset of grapevines obtained in Portuguese vineyards for node detection. Overall, all used models were capable of achieving correct node detection in images of grapevines from the three distinct datasets. Considering the trade-off between accuracy and inference speed, the YOLOv7 model demonstrated to be the most robust in detecting nodes in 2D images of grapevines, achieving F1-Score values between 70% and 86.5% with inference times of around 89 ms for an input size of 1280 x 1280 px. Considering these results, this work contributes with an efficient approach for real-time node detection for further implementation on an autonomous robotic pruning system.

2024

A Model Predictive Control Approach to Enhance Obstacle Avoidance While Performing Autonomous Docking

Autores
Pinto A.; Ferreira B.M.; Cruz N.; Soares S.P.; Cunha J.B.;

Publicação
Oceans Conference Record (IEEE)

Abstract
In the present paper, we propose a control approach to perform docking of an autonomous surface vehicle (ASV) while avoiding surrounding obstacles. This control architecture is composed of two sequential controllers. The first outputs a feasible trajectory between the vessel's initial and target state while avoiding obstacles. This trajectory also minimizes the vehicle velocity while performing the maneuvers to increase the safety of onboard passengers. The second controller performs trajectory tracking while accounting for the actuator's physical limits (extreme actuation values and the rate of change). The method's performance is tested on simulation, as it enables a reliable ground truth method to validate the control architecture proposed.

Teses
supervisionadas

2023

Sistema autónomo para reaproveitamento de águas quentes do banho

Autor
Luís Miguel Sampaio Sanches Ferreira

Instituição
UTAD

2023

Localization and Mapping Based on Semantic and Multi-layer Maps Concepts

Autor
André Silva Pinto de Aguiar

Instituição
UTAD

2023

Planejamentode preensão adaptável: uma nova arquitetura de Pipeline de agarramento unificado e modular

Autor
João Pedro Carvalho de Souza

Instituição
UTAD

2023

Adaptive Grasping Planning: A Novel Unified and Modular Grasping Pipeline Architecture

Autor
João Pedro Carvalho de Souza

Instituição
UTAD

2022

Localization and Mapping Based on Semantic and Multi-layer Maps Concepts

Autor
André Silva Pinto de Aguiar

Instituição
UTAD