Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Fernando José Ribeiro
  • Cluster

    Energia
  • Cargo

    Assistente de Investigação
  • Desde

    01 junho 2018
002
Publicações

2022

The Role of Hydrogen Electrolysers in the Frequency Containment Reserve: A Case Study in the Iberian Peninsula up to 2040

Autores
Ribeiro F.J.; Lopes J.A.P.; Fernandes F.S.; Soares F.J.; Madureira A.G.;

Publicação
SEST 2022 - 5th International Conference on Smart Energy Systems and Technologies

Abstract
This paper investigates the contribution of hydrogen electrolysers (HEs) as highly controllable loads in the context of the Frequency Containment Reserve (FCR), in future operation scenarios on the Iberian Peninsula (IP). The research question is whether HEs can mitigate system insecurity regarding frequency or Rate of Change of Frequency (RoCoF) in critical periods of high renewable energy penetration (i.e. low system inertia), due to the fact that these periods will coincide with high volume of green hydrogen production. The proposed simulation platform for analysis consists of a simplified dynamic model developed in MATLAB/Simulink. The results obtained illustrate how HEs can outperform conventional generators on the provision of FCR. It is seen that the reference incident of 1GW loss in the IP in a 2040 low inertia scenario does not lead to insecure values of either frequency or Rate of Change of Frequency (RoCoF). On the other hand, an instantaneous loss of inverter-based resources (IBR) generation following a short-circuit may result in RoCoF violating security thresholds. The obtained results suggest that the HEs expected to be installed in the IP in 2040 may contribute to reduce RoCoF in this case, although this mitigation may be insufficient. The existing FCR mechanism does not fully exploit the fast-ramping capability of HEs; reducing measurement acquisiton delay would not improve results. © 2022 IEEE.

2021

FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement

Autores
Soares, F; Madureira, A; Pages, A; Barbosa, A; Coelho, A; Cassola, F; Ribeiro, F; Viana, J; Andrade, J; Dorokhova, M; Morais, N; Wyrsch, N; Sorensen, T;

Publicação
ENERGIES

Abstract
Energy efficiency in buildings can be enhanced by several actions: encouraging users to comprehend and then adopt more energy-efficient behaviors; aiding building managers in maximizing energy savings; and using automation to optimize energy consumption, generation, and storage of controllable and flexible devices without compromising comfort levels and indoor air-quality parameters. This paper proposes an integrated Information and communications technology (ICT) based platform addressing all these factors. The gamification platform is embedded in the ICT platform along with an interactive energy management system, which aids interested stakeholders in optimizing “when and at which rate” energy should be buffered and consumed, with several advantages, such as reducing peak load, maximizing local renewable energy consumption, and delivering more efficient use of the resources available in individual buildings or blocks of buildings. This system also interacts with an automation manager and a users’ behavior predictor application. The work was developed in the Horizon 2020 FEEdBACk (Fostering Energy Efficiency and BehAvioral Change through ICT) project.

2021

Real-World Implementation of an ICT-Based Platform to Promote Energy Efficiency

Autores
Dorokhova, M; Ribeiro, F; Barbosa, A; Viana, J; Soares, F; Wyrsch, N;

Publicação
ENERGIES

Abstract
The energy efficiency requirements of most energy-consuming sectors have increased recently in response to climate change. For buildings, this means targeting both facility managers and building users with the aim of identifying potential energy savings and encouraging more energy-responsible behaviors. The Information and Communication Technology (ICT) platform developed in Horizon 2020 FEEdBACk project intends to fulfill these goals by enabling the optimization of energy consumption, generation, and storage and control of flexible devices without compromising comfort levels and indoor air quality parameters. This work aims to demonstrate the real-world implementation and functionality of the ICT platform composed of Load Disaggregation, Net Load Forecast, Occupancy Forecast, Automation Manager, and Behavior Predictor applications. Particularly, the results obtained by individual applications during the test phase are presented alongside the specific metrics used to evaluate their performance.