Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Diogo Marcelo Nogueira
  • Cargo

    Assistente de Investigação
  • Desde

    15 novembro 2012
Publicações

2023

The selection of an optimal segmentation region in physiological signals

Autores
Oliveira, J; Carvalho, M; Nogueira, D; Coimbra, M;

Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Physiological signals are often corrupted by noisy sources. Usually, artificial intelligence algorithms analyze the whole signal, regardless of its varying quality. Instead, experienced cardiologists search for a high-quality signal segment, where more accurate conclusions can be draw. We propose a methodology that simultaneously selects the optimal processing region of a physiological signal and determines its decoding into a state sequence of physiologically meaningful events. Our approach comprises two phases. First, the training of a neural network that then enables the estimation of the state probability distribution of a signal sample. Second, the use of the neural network output within an integer program. The latter models the problem of finding a time window by maximizing a likelihood function defined by the user. Our method was tested and validated in two types of signals, the phonocardiogram and the electrocardiogram. In phonocardiogram and electrocardiogram segmentation tasks, the system's sensitivity increased on average from 95.1% to 97.5% and from 78.9% to 83.8%, respectively, when compared to standard approaches found in the literature.

2022

The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification

Autores
Oliveira, J; Renna, F; Costa, PD; Nogueira, M; Oliveira, C; Ferreira, C; Jorge, A; Mattos, S; Hatem, T; Tavares, T; Elola, A; Rad, AB; Sameni, R; Clifford, GD; Coimbra, MT;

Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract
Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.

2022

The robustness of Random Forest and Support Vector Machine Algorithms to a Faulty Heart Sound Segmentation

Autores
Oliveira, J; Nogueira, DM; Ferreira, CA; Jorge, AM; Coimbra, MT;

Publicação
44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15, 2022

Abstract

2022

Can Multi-channel Heart Sounds Analysis improve Murmur Detection?

Autores
Nogueira, M; Oliveira, J; Ferreira, CG; Coimbra, MT; Jorge, AM;

Publicação
2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22)

Abstract
Cardiac auscultation is still the most cost-effective screening procedure for cardiovascular diseases. The development of computer assisted methods can empower a large variety of health professionals and thus enable mass cardiac health low-cost screening. The procedure for correct cardiac auscultation includes listening to the heart sounds of the four main auscultation spots. Until recently, attempts to develop automatic heart sound analysis methods that explore the multi-channel richness of a real auscultation, were very difficult due to the lack of adequate public datasets. In this work, we use the CirCor Dataset which is characterized by the existence of more than one heart sound per patient (each patient has heart sounds collected at different auscultation spots). Using this dataset, we evaluate and quantify the comparative impact of using a single or a multichannel approach. A single channel approach uses the sound from a single auscultation spot, whereas a multi-channel approach uses four auscultation spots in an asynchronous way. From the different classifiers tested, models that use four auscultation spots achieved a higher overall performance than those that search for abnormalities in a single heart sound spot. Our best result is a multi-channel SVM that analyzes four auscultation spots, with an overall performance of 87,4 %. This opens the path to future research using a multi-channel approach.

2021

Do we really need a segmentation step in heart sound classification algorithms?

Autores
Oliveira, J; Nogueira, D; Renna, F; Ferreira, C; Jorge, AM; Coimbra, M;

Publicação
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)

Abstract
Cardiac auscultation is the key screening procedure to detect and identify cardiovascular diseases (CVDs). One of many steps to automatically detect CVDs using auscultation, concerns the detection and delimitation of the heart sound boundaries, a process known as segmentation. Whether to include or not a segmentation step in the signal classification pipeline is nowadays a topic of discussion. Up to our knowledge, the outcome of a segmentation algorithm has been used almost exclusively to align the different signal segments according to the heartbeat. In this paper, the need for a heartbeat alignment step is tested and evaluated over different machine learning algorithms, including deep learning solutions. From the different classifiers tested, Gate Recurrent Unit (GRU) Network and Convolutional Neural Network (CNN) algorithms are shown to be the most robust. Namely, these algorithms can detect the presence of heart murmurs even without a heartbeat alignment step. Furthermore, Support Vector Machine (SVM) and Random Forest (RF) algorithms require an explicit segmentation step to effectively detect heart sounds and murmurs, the overall performance is expected drop approximately 5% on both cases.