Detalhes
Nome
Daniel MendesCluster
InformáticaCargo
Investigador SéniorDesde
01 abril 2020
Nacionalidade
PortugalCentro
Computação Centrada no Humano e Ciência da InformaçãoContactos
+351222094000
daniel.mendes@inesctec.pt
2023
Autores
Fidalgo, CG; Sousa, M; Mendes, D; dos Anjos, RK; Medeiros, D; Singh, K; Jorge, J;
Publicação
2023 IEEE CONFERENCE VIRTUAL REALITY AND 3D USER INTERFACES, VR
Abstract
Remote collaborative work has become pervasive in many settings, ranging from engineering to medical professions. Users are immersed in virtual environments and communicate through life-sized avatars that enable face-to-face collaboration. Within this context, users often collaboratively view and interact with virtual 3D models, for example to assist in the design of new devices such as customized prosthetics, vehicles or buildings. Discussing such shared 3D content face-to-face, however, has a variety of challenges such as ambiguities, occlusions, and different viewpoints that all decrease mutual awareness, which in turn leads to decreased task performance and increased errors. To address this challenge, we introduce MAGIC, a novel approach for understanding pointing gestures in a face-to-face shared 3D space, improving mutual understanding and awareness. Our approach distorts the remote user's gestures to correctly reflect them in the local user's reference space when face-to-face. To measure what two users perceive in common when using pointing gestures in a shared 3D space, we introduce a novel metric called pointing agreement. Results from a user study suggest that MAGIC significantly improves pointing agreement in face-toface collaboration settings, improving co-presence and awareness of interactions performed in the shared space. We believe that MAGIC improves remote collaboration by enabling simpler communication mechanisms and better mutual awareness.
2023
Autores
Moreira, J; Mendes, D; Goncalves, D;
Publicação
INFORMATION VISUALIZATION
Abstract
Incidental visualizations are meant to be seen at-a-glance, on-the-go, and during short exposure times. They will always appear side-by-side with an ongoing primary task while providing ancillary information relevant to those tasks. They differ from glanceable visualizations because looking at them is never their major focus, and they differ from ambient visualizations because they are not embedded in the environment, but appear when needed. However, unlike glanceable and ambient visualizations that have been studied in the past, incidental visualizations have yet to be explored in-depth. In particular, it is still not clear what is their impact on the users' performance of primary tasks. Therefore, we conducted an empirical online between-subjects user study where participants had to play a maze game as their primary task. Their goal was to complete several mazes as quickly as possible to maximize their score. This game was chosen to be a cognitively demanding task, bound to be significantly affected if incidental visualizations have a meaningful impact. At the same time, they had to answer a question that appeared while playing, regarding the path followed so far. Then, for half the participants, an incidental visualization was shown for a short period while playing, containing information useful for answering the question. We analyzed various metrics to understand how the maze performance was impacted by the incidental visualization. Additionally, we aimed to understand if working memory would influence how the maze was played and how visualizations were perceived. We concluded that incidental visualizations of the type used in this study do not disrupt people while they played the maze as their primary task. Furthermore, our results strongly suggested that the information conveyed by the visualization improved their performance in answering the question. Finally, working memory had no impact on the participants' results.
2023
Autores
Fidalgo, CG; Sousa, M; Mendes, D; dos Anjos, RK; Medeiros, D; Singh, K; Jorge, J;
Publicação
2023 IEEE CONFERENCE VIRTUAL REALITY AND 3D USER INTERFACES, VR
Abstract
Remote collaborative work has become pervasive in many settings, ranging from engineering to medical professions. Users are immersed in virtual environments and communicate through life-sized avatars that enable face-to-face collaboration. Within this context, users often collaboratively view and interact with virtual 3D models, for example to assist in the design of new devices such as customized prosthetics, vehicles or buildings. Discussing such shared 3D content face-to-face, however, has a variety of challenges such as ambiguities, occlusions, and different viewpoints that all decrease mutual awareness, which in turn leads to decreased task performance and increased errors. To address this challenge, we introduce MAGIC, a novel approach for understanding pointing gestures in a face-to-face shared 3D space, improving mutual understanding and awareness. Our approach distorts the remote user's gestures to correctly reflect them in the local user's reference space when face-to-face. To measure what two users perceive in common when using pointing gestures in a shared 3D space, we introduce a novel metric called pointing agreement. Results from a user study suggest that MAGIC significantly improves pointing agreement in face-toface collaboration settings, improving co-presence and awareness of interactions performed in the shared space. We believe that MAGIC improves remote collaboration by enabling simpler communication mechanisms and better mutual awareness.
2023
Autores
Fidalgo, CG; Sousa, M; Mendes, D; dos Anjos, RK; Medeiros, D; Singh, K; Jorge, J;
Publicação
2023 IEEE CONFERENCE VIRTUAL REALITY AND 3D USER INTERFACES, VR
Abstract
Remote collaborative work has become pervasive in many settings, ranging from engineering to medical professions. Users are immersed in virtual environments and communicate through life-sized avatars that enable face-to-face collaboration. Within this context, users often collaboratively view and interact with virtual 3D models, for example to assist in the design of new devices such as customized prosthetics, vehicles or buildings. Discussing such shared 3D content face-to-face, however, has a variety of challenges such as ambiguities, occlusions, and different viewpoints that all decrease mutual awareness, which in turn leads to decreased task performance and increased errors. To address this challenge, we introduce MAGIC, a novel approach for understanding pointing gestures in a face-to-face shared 3D space, improving mutual understanding and awareness. Our approach distorts the remote user's gestures to correctly reflect them in the local user's reference space when face-to-face. To measure what two users perceive in common when using pointing gestures in a shared 3D space, we introduce a novel metric called pointing agreement. Results from a user study suggest that MAGIC significantly improves pointing agreement in face-toface collaboration settings, improving co-presence and awareness of interactions performed in the shared space. We believe that MAGIC improves remote collaboration by enabling simpler communication mechanisms and better mutual awareness.
2023
Autores
Pintani, D; Caputo, A; Mendes, D; Giachetti, A;
Publicação
Proceedings of the 15th Biannual Conference of the Italian SIGCHI Chapter, CHItaly 2023, Torino, Italy, September 20-22, 2023
Abstract
Despite significant efforts dedicated to exploring the potential applications of collaborative mixed reality, the focus of the existing works is mostly related to the creation of shared virtual/mixed environments resolving concurrent manipulation issues rather than supporting an effective collaboration strategy for the design procedure. For this reason, we present CIDER, a system for the collaborative editing of 3D augmented scenes allowing two or more users to manipulate the virtual scene elements independently and without unexpected changes. CIDER is based on the use of "layers"encapsulating the state of the environment with private layers that can be edited independently and a global one collaboratively updated with "commit"operations. Using this system, implemented for the HoloLens 2 headsets and supporting multiple users, we performed a user test on a realistic interior design task, evaluating the general usability and comparing two different approaches for the management of the atomic commit: forced (single-phase) and voting (requiring consensus), analyzing the effects of this choice on the collaborative behavior. © 2023 ACM.
Teses supervisionadas
2022
Autor
Bruno Dias da Costa Carvalho
Instituição
UP-FEUP
2022
Autor
Daniel Gazola Bradaschia
Instituição
UP-FEUP
2022
Autor
Filipe Guedes Barbosa
Instituição
UP-FEUP
2022
Autor
João Miguel dos Santos de Lima Monteiro
Instituição
UP-FEUP
2022
Autor
Paulo Jorge Palhau Moutinho
Instituição
UP-FEUP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.