Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Arnaldo Santos
  • Cargo

    Investigador Colaborador Externo
  • Desde

    01 junho 2017
Publicações

2025

From data to action: How AI and learning analytics are shaping the future of distance education

Autores
Dias, JT; Santos, A; Mamede, HS;

Publicação
AI and Learning Analytics in Distance Learning

Abstract
This chapter examines how Artificial Intelligence (AI) and Learning Analytics (LA) are transformingdistanceeducation, accelerated by the COVID-19 shift toe-learning. By using data from Learning Management Systems (LMS), these technologies can personalize learning, improve student retention, and automate tasks. AI, particularly machine learning, enables dynamic adaptation to student needs, while LA provides valuable insights for informed instructional decisions. However, ethical concerns, including data privacy and algorithmic bias, must be addressed to ensure equitable access and fair learning outcomes. The future of distance learning lies in responsible integration of AI and LA, creating immersive and inclusive educational experiences. © 2025 by IGI Global Scientific Publishing. All rights reserved.

2025

AI and learning analytics in distance learning

Autores
Mamede, S; Santos, A;

Publicação
AI and Learning Analytics in Distance Learning

Abstract
The ever-changing landscape of distance learning AI and learning analytics transforms engagement and efficiency in education. AI systems analyze behavior and performance data to provide real-time feedback for improved outcomes. Learning analytics further help educators to identify at-risk students while fostering better teaching strategies. By integrating AI with learning analytics, distance education becomes more inclusive, ensuring learners receive the support necessary to thrive in an increasingly digital and knowledge-driven world. AI and Learning Analytics in Distance Learning explores the development of distance learning. It examines the challenges of using these systems and integrating them with distance learning. The book covers topics such as AI, distance learning technology, and management systems, and is an excellent resource for academicians, educators, researchers, computer engineers, and data scientists. © 2025 by IGI Global Scientific Publishing. All rights reserved.

2025

Methodology for Business Process Automation in SMEs: From Requirements Analysis to Practical Demonstration

Autores
Moreira, S; Mamede, S; Santos, A;

Publicação
Emerging Science Journal

Abstract
This study aims to develop a methodology to assist Small and Medium Enterprises (SMEs) in effectively adopting Business Process Automation (BPA). Despite its growing importance in streamlining routine tasks and enabling employees to focus on more creative activities, numerous organizations face challenges in implementing BPA due to unclear procedures, insufficient knowledge of eligible processes, and uncertainty regarding the necessary technology. In response to these challenges, we introduce the Methodology for Business Process Automation (M4BPA), an artifact designed to guide SMEs through a structured BPA implementation process. The research follows the Design Science Research Methodology (DSRM). The requirements for the artifact came from the results of a previous Systematic Literature Review (SLR). M4BPA was demonstrated within real SME environments, providing solid evidence of its efficacy. The findings suggest that M4BPA significantly enhances SMEs' ability to implement BPA efficiently, offering a practical toolkit that facilitates the process. The novelty of this work lies in the development of a BPA methodology specifically tailored for SMEs, addressing existing gaps in current frameworks and providing a best-practice model for similar organizations. This research contributes to the intermediate results of a doctoral project, offering valuable insights for both practitioners and researchers in the field of BPA. © 2025 by the authors.

2025

Applying Large Language Models to Software Development: Enhancing Requirements, Design and Code

Autores
Santos, G; Silveira, C; Santos, V; Santos, A; Mamede, H;

Publicação
Advances in Intelligent Systems and Computing - New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence

Abstract

2025

Evolution of an Adaptive Serious Games Framework Using the Design Science Research Methodology

Autores
Pistono, A; Santos, A; Baptista, R;

Publicação
World Journal of Information Systems

Abstract
Games with purposes beyond entertainment, the so-called serious games, have been useful tools in professional training, especially in engaging participants. However, their evaluation and, also, their adaptable characteristics to different scenarios, audiences and contexts remain challenges. This paper examines the application of serious games in professional training, their results and adaptable ways to achieve certain goals. Using the Design Science Research (DSR) methodology, a framework was built to develop and evaluate serious games to improve user experience, learning outcomes, knowledge transfer to work situations, and the application of the skills practised in the game in real professional settings. At this stage, the investigation presents a framework regarding the triangulation of data collected from a systematic literature review, focus groups and interviews. Following the DSR methodology, the next steps of this investigation, listed at the end of the paper, are the demonstration of the framework in serious game development and the evaluation and validation of this artefact.