Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

António Lucas Soares é investigador no INESCTEC e Professor Associado no Departamento de Engenharia Informática da FEUP.

A sua área de especialização é Sistemas de Informação em aplicações a redes colaborativas e gestão da informação e conhecimento, particularmente em organizações industriais. O seus interesses de investigação incluem sistemas sócio-técnicos, representação do conhecimento, plataformas digitais para colaboração, design science research.

É atualmente coordenador do Centro de Engenharia de Sistemas Empresariais e também do Cluster Indústria e Inovação do INESCTEC.

Na Universidade do Porto é o diretor do Mestrado em CiÊncia da Informação (FEUP/FLUP). É membro da comissão executiva do ramo europeu da organização iSchools (Information Schools) e foi membro fundador do capítulo português da Association for Information Systems.

Publica regularmente em revistas científicas nas áreas de gestão da informação e gestão do conhecimento.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    António Lucas Soares
  • Cargo

    Coordenador de Centro
  • Desde

    01 outubro 1993
026
Publicações

2026

Hybrid Human-AI Collaborative Networks

Autores
Camarinha-Matos, LM; Ortiz, A; Boucher, X; Lucas Soares, A;

Publicação
IFIP Advances in Information and Communication Technology

Abstract

2026

Data Spaces as Enablers of Digital Twin Ecosystems: Challenges and Requirements

Autores
Chaves, AC; Nunes Alonso, AN; Soares, AL;

Publicação
IFIP Advances in Information and Communication Technology

Abstract
The increasing adoption of the Digital Twin concept and technology for managing complex physical assets has led to the emergence of Digital Twin Ecosystems, where interconnected digital twins generate additional value. However, ensuring seamless data sharing and interoperability among diverse systems presents significant challenges. Although research on digital twin architectures has advanced, gaps remain in addressing data governance, security, and stakeholders’ trust. This study performs a comprehensive literature review to investigate architectural solutions to overcome challenges in digital twin ecosystems. The findings identify key requirements such as interoperability, governance, and data management, emphasizing the role of Data Spaces as enablers of secure data sharing. By structuring the requirements for digital twin ecosystem architectures, this paper identifies gaps suggesting future research on scalable and sustainable digital twin ecosystem implementations. These insights are expected to contribute to the development of frameworks that integrate technical advances with organizational and regulatory considerations, ultimately fostering the adoption of digital twin ecosystems across industries. © 2025 Elsevier B.V., All rights reserved.

2026

Human-Centered Augmented Reality in Manufacturing: Enhancing Efficiency, Accuracy, and Operator Adoption

Autores
Ramalho, Filipa Rente, FR,; Soares, António Lucas, AL,; null; Almeida, António Henrique, AH,; Oliveira, Manuel Fradinho, MF,;

Publicação
IFIP Advances in Information and Communication Technology

Abstract
This paper evaluates an Augmented Reality (AR) solution designed to support quality control in a assembly line inspection station before body marriage at a European automotive manufacturer. A three-phase methodology was applied: an AS-IS assessment, a formative evaluation of an intermediate prototype, and a summative evaluation under real production conditions. The AR solution aimed to improve task standardization, non-value-added time (NVAT), and enhance operator accuracy. The results showed that operators successfully developed inspections using the AR tool, identifying and correcting non-conformities (NOKs) while maintaining task duration. Participants valued having contextual information directly in their field of vision and reported increased rigor and consistency. However, usability and ergonomic improvements were noted, such as headset weight, gesture interaction, and visibility over dark components. The findings highlight AR’s potential to support operator autonomy and accuracy in industrial environments while emphasizing the need for human-centered design and integration to ensure long-term adoption. © 2025 Elsevier B.V., All rights reserved.

2025

Socio-Technical AI Maturity in Supply Chains: Insights from the Pulp and Paper Sector

Autores
Fernanda Freitas; Ricardo Zimmermann; Gaudencio Freires; Fabio Couto; Cristiano Fontes; António Lucas Soares; Gustavo Dalmarco; Donna Rhodes; Jorão Gomes;

Publicação
IFIP advances in information and communication technology

Abstract

2025

Generative AI as a Catalyst for Collaborative Knowledge Management: Impacts Across Individual, Intra, and Inter-organizational Levels

Autores
Silva, RR; Silva, HD; Soares, AL;

Publicação
IFIP Advances in Information and Communication Technology - Hybrid Human-AI Collaborative Networks

Abstract

Teses
supervisionadas

2023

Immersive Technologies in Complex Manufacturing Systems as an Informational Problem: A Human-Centered Approach

Autor
Filipa Rente Ramalho

Instituição
UP-FEUP

2023

Towards a Digital-Twin Based, Multi-sided Market of Data-enabled Product-Services Systems

Autor
Henrique Diogo Cardoso da Silva

Instituição
UP-FEUP

2023

Organização da informação em Redes Colaborativas: um estudo de caso em Associações Empresariais

Autor
Solange Francisca Mazzaroto

Instituição
UP-FEUP

2023

A Roadmap For Scrum Adoption: an Industrial Case Study

Autor
Andreia Barreto Gouveia

Instituição
UP-FEUP

2022

Combination of multi-paradigm models for Power Transformer fault prediction

Autor
Francisco José Guedes de Melo Aguiar

Instituição
UP-FEUP