Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Licenciei-me em Engenharia Electrotécnica e de Computadores, ramo de Sistemas de Energia, pela Faculdade de Engenharia da Universidade do Porto (FEUP) em Julho de 2003. No ano seguinte, ingressei na Unidade de Sistemas de Energia do Instituto de Engenharia de Sistemas e Computadores do Porto (INESC Porto), onde iniciei a minha actividade de investigação. Em Dezembro de 2005 obtive o grau de Mestre em Engenharia Electrotécnica e de Computadores (especialização em Sistemas de Energia) na FEUP. Posteriormente, em Novembro de 2010, obtive o grau de Doutor em Engenharia Electrotécnica e de Computadores, também pela FEUP. A minha actividade de investigação tem sido orientada para a integração de Produção Distribuída e Micro-Geração nas redes de distribuição de energia eléctrica, bem como para o desenvolvimento de funcionalidades avançadas para redes eléctricas inteligentes (Smart Grids) envolvendo fontes de energia renovável, dispositivos de armazenamento e gestão e consumos. Mais recentemente tenho trabalhado na área da Eficiência Energética. Nestes domínios de actividade, colaborei nos projectos Europeus de I&D MICROGRIDS do FP5, MORE MICROGRIDS do FP6, MERGE, SuSTAINABLE, iTESLA e evolvDSO do FP7 e SENSIBLE do H2020. Estive também activamente envolvido na equipa de trabalho do INESC Porto no âmbito do projecto INOVGRID com a EDP Distribuição e tenho participado no desenvolvimento de trabalhos de consultoria para diversas entidades como a EDP, EFACEC, EDA, GeSto Energia e AENOR, entre outros. Fui Professor Auxiliar Convidado na FEUP em 2015. Adicionalmente, dei formação avançada e apresentei workshops técnicos dentro dos tópicos das Micro-Redes e Smart Grids tanto em Portugal como no estrangeiro. Actualmente sou Investigador Sénior do Centro de Sistemas de Energia (CPES) do INESC Tecnologia e Ciência (INESC TEC) – Laboratório Associado onde sou Coordenador do projecto Europeu ATTEST do H2020, estando ainda envolvido nos projectos Europeus FEEdBACk e InteGrid do H2020 e em outros projectos de consultoria. As minhas principais responsabilidades envolvem gestão de projectos e desenvolvimento de tarefas específicas para projectos de I&D e consultoria, preparação de propostas para projectos de I&D e consultoria e escrita de entregáveis, relatórios técnicos e artigos científicos. Sou ainda Professor Auxiliar na Universidade Lusófona do Porto (ULP) desde 2011, onde também sou Director da Licenciatura em Engenharia Electrotécnica de Sistemas de Energia desde 2019. Sou autor de mais de cinquenta publicações científicas, com revisão por pares, em revistas e conferências da especialidade (h-index 12, de acordo com o SCOPUS), bem como autor de um livro e co-autor de seis capítulos em livro.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    André Guimarães Madureira
  • Cluster

    Energia
  • Cargo

    Investigador Colaborador Externo
  • Desde

    02 fevereiro 2004
020
Publicações

2022

Local Energy Communities in Service of Sustainability and Grid Flexibility Provision: Hierarchical Management of Shared Energy Storage

Autores
Nagpal, H; Avramidis, I; Capitanescu, F; Madureira, AG;

Publicação
IEEE Transactions on Sustainable Energy

Abstract

2022

A Novel TSO-DSO Ancillary Service Procurement Coordination Approach for Congestion Management

Autores
Alizadeh, MI; Usman, M; Capitanescu, F; Madureira, AG;

Publicação
2022 IEEE Power & Energy Society General Meeting (PESGM)

Abstract

2022

The Role of Hydrogen Electrolysers in the Frequency Containment Reserve: A Case Study in the Iberian Peninsula up to 2040

Autores
Ribeiro F.J.; Lopes J.A.P.; Fernandes F.S.; Soares F.J.; Madureira A.G.;

Publicação
SEST 2022 - 5th International Conference on Smart Energy Systems and Technologies

Abstract
This paper investigates the contribution of hydrogen electrolysers (HEs) as highly controllable loads in the context of the Frequency Containment Reserve (FCR), in future operation scenarios on the Iberian Peninsula (IP). The research question is whether HEs can mitigate system insecurity regarding frequency or Rate of Change of Frequency (RoCoF) in critical periods of high renewable energy penetration (i.e. low system inertia), due to the fact that these periods will coincide with high volume of green hydrogen production. The proposed simulation platform for analysis consists of a simplified dynamic model developed in MATLAB/Simulink. The results obtained illustrate how HEs can outperform conventional generators on the provision of FCR. It is seen that the reference incident of 1GW loss in the IP in a 2040 low inertia scenario does not lead to insecure values of either frequency or Rate of Change of Frequency (RoCoF). On the other hand, an instantaneous loss of inverter-based resources (IBR) generation following a short-circuit may result in RoCoF violating security thresholds. The obtained results suggest that the HEs expected to be installed in the IP in 2040 may contribute to reduce RoCoF in this case, although this mitigation may be insufficient. The existing FCR mechanism does not fully exploit the fast-ramping capability of HEs; reducing measurement acquisiton delay would not improve results. © 2022 IEEE.

2021

FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement

Autores
Soares, F; Madureira, A; Pages, A; Barbosa, A; Coelho, A; Cassola, F; Ribeiro, F; Viana, J; Andrade, J; Dorokhova, M; Morais, N; Wyrsch, N; Sorensen, T;

Publicação
ENERGIES

Abstract
Energy efficiency in buildings can be enhanced by several actions: encouraging users to comprehend and then adopt more energy-efficient behaviors; aiding building managers in maximizing energy savings; and using automation to optimize energy consumption, generation, and storage of controllable and flexible devices without compromising comfort levels and indoor air-quality parameters. This paper proposes an integrated Information and communications technology (ICT) based platform addressing all these factors. The gamification platform is embedded in the ICT platform along with an interactive energy management system, which aids interested stakeholders in optimizing “when and at which rate” energy should be buffered and consumed, with several advantages, such as reducing peak load, maximizing local renewable energy consumption, and delivering more efficient use of the resources available in individual buildings or blocks of buildings. This system also interacts with an automation manager and a users’ behavior predictor application. The work was developed in the Horizon 2020 FEEdBACk (Fostering Energy Efficiency and BehAvioral Change through ICT) project.

2021

Functional Scalability and Replicability Analysis for Smart Grid Functions: The InteGrid Project Approach

Autores
Menci, SP; Bessa, RJ; Herndler, B; Korner, C; Rao, BV; Leimgruber, F; Madureira, AA; Rua, D; Coelho, F; Silva, JV; Andrade, JR; Sampaio, G; Teixeira, H; Simoes, M; Viana, J; Oliveira, L; Castro, D; Krisper, U; Andre, R;

Publicação
ENERGIES

Abstract
The evolution of the electrical power sector due to the advances in digitalization, decarbonization and decentralization has led to the increase in challenges within the current distribution network. Therefore, there is an increased need to analyze the impact of the smart grid and its implemented solutions in order to address these challenges at the earliest stage, i.e., during the pilot phase and before large-scale deployment and mass adoption. Therefore, this paper presents the scalability and replicability analysis conducted within the European project InteGrid. Within the project, innovative solutions are proposed and tested in real demonstration sites (Portugal, Slovenia, and Sweden) to enable the DSO as a market facilitator and to assess the impact of the scalability and replicability of these solutions when integrated into the network. The analysis presents a total of three clusters where the impact of several integrated smart tools is analyzed alongside future large scale scenarios. These large scale scenarios envision significant penetration of distributed energy resources, increased network dimensions, large pools of flexibility, and prosumers. The replicability is analyzed through different types of networks, locations (country-wise), or time (daily). In addition, a simple replication path based on a step by step approach is proposed as a guideline to replicate the smart functions associated with each of the clusters.