Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Armando Sousa

2023

ENHANCING SAMPLE EFFICIENCY FOR TEMPERATURE CONTROL IN DED WITH REINFORCEMENT LEARNING AND MOOSE FRAMEWORK

Autores
Sousa, J; Darabi, R; Sousa, A; Reis, LP; Brueckner, F; Reis, A; de Sá, JC;

Publicação
PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 3

Abstract
Directed Energy Deposition (DED) is crucial in additive manufacturing for various industries like aerospace, automotive, and biomedical. Precise temperature control is essential due to high-power lasers and dynamic environmental changes. Employing Reinforcement Learning (RL) can help with temperature control, but challenges arise from standardization and sample efficiency. In this study, a model-based Reinforcement Learning (MBRL) approach is used to train a DED model, improving control and efficiency. Computational models evaluate melt pool geometry and temporal characteristics during the process. The study employs the Allen-Cahn phase field (AC-PF) model using the Finite Element Method (FEM) with the Multi-physics Object-Oriented Simulation Environment (MOOSE). MBRL, specifically Dyna-Q+, outperforms traditional Q-learning, requiring fewer samples. Insights from this research aid in advancing RL techniques for laser metal additive manufacturing.

2025

AR/VR Digital Twin for simulation and data collection of robotic environments

Autores
Martins, JG; Nutonen, K; Costa, P; Kuts, V; Otto, T; Sousa, A; Petry, MR;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Digital twins enable real-time modeling, simulation, and monitoring of complex systems, driving advancements in automation, robotics, and industrial applications. This study presents a large-scale digital twin-testing facility for evaluating mobile robots and pilot robotic systems in a research laboratory environment. The platform integrates high-fidelity physical and environmental models, providing a controlled yet dynamic setting for analyzing robotic behavior. A key feature of the system is its comprehensive data collection framework, capturing critical parameters such as position, orientation, and velocity, which can be leveraged for machine learning, performance optimization, and decision-making. The facility also supports the simulation of discrete operational systems, using predictive modeling to bridge informational gaps when real-time data updates are unavailable. The digital twin was validated through a matrix manufacturing system simulation, with an Augmented Reality (AR) interface on the HoloLens 2 to overlay digital information onto mobile platform controllers, enhancing situational awareness. The main contributions include a digital twin framework for deploying data-driven robotic systems and three key AR/VR integration optimization methods. Demonstrated in a laboratory setting, the system is a versatile tool for research and industrial applications, fostering insights into robotic automation and digital twin scalability while reducing costs and risks associated with real-world testing.

2025

Exploring the Potential of LLM-based Chatbots for Task Scheduling in Robot Operations

Autores
Rema, C; Sousa, A; Sobreira, H; Costa, P; Silva, MF;

Publicação
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
The rise of Industry 4.0 has revolutionized manufacturing by integrating real-time data analysis, artificial intelligence (AI), automation, and interconnected systems, enabling adaptive and resilient smart factories. Autonomous Mobile Robots (AMRs), with their advanced mobility and navigation capabilities, are a pillar of this transformation. However, their deployment in job shop environments adds complexity to the already challenging Job Shop Scheduling Problem (JSSP), expanding it to include task allocation, robot scheduling, and travel time optimization, creating a multi-faceted, non-deterministic polynomial-time hardness (NP-hard) problem. Traditional approaches such as heuristics, meta-heuristics, and mixed integer linear programming (MILP) are commonly used. Recent AI advancements, particularly large language models (LLM), have shown potential in addressing these scheduling challenges due to significant improvements in reasoning and decision-making from textual data. This paper examines the application of LLM to tackle scheduling complexities in smart job shops with mobile robots. Guided by tailored prompts inserted manually, LLM are employed to generate scheduling solutions, being these compared to an heuristic-based method. The results indicate that LLM currently have limitations in solving complex combinatorial problems, such as task scheduling with mobile robots. Due to issues with consistency and repeatability, they are not yet reliable enough for practical implementation in industrial environments. However, they offer a promising foundation for augmenting traditional approaches in the future.

  • 25
  • 25