Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Armando Sousa

2023

ENHANCING SAMPLE EFFICIENCY FOR TEMPERATURE CONTROL IN DED WITH REINFORCEMENT LEARNING AND MOOSE FRAMEWORK

Autores
Sousa, J; Darabi, R; Sousa, A; Reis, LP; Brueckner, F; Reis, A; de Sá, JC;

Publicação
PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 3

Abstract
Directed Energy Deposition (DED) is crucial in additive manufacturing for various industries like aerospace, automotive, and biomedical. Precise temperature control is essential due to high-power lasers and dynamic environmental changes. Employing Reinforcement Learning (RL) can help with temperature control, but challenges arise from standardization and sample efficiency. In this study, a model-based Reinforcement Learning (MBRL) approach is used to train a DED model, improving control and efficiency. Computational models evaluate melt pool geometry and temporal characteristics during the process. The study employs the Allen-Cahn phase field (AC-PF) model using the Finite Element Method (FEM) with the Multi-physics Object-Oriented Simulation Environment (MOOSE). MBRL, specifically Dyna-Q+, outperforms traditional Q-learning, requiring fewer samples. Insights from this research aid in advancing RL techniques for laser metal additive manufacturing.

  • 25
  • 25