2007
Autores
Gama, J; Gaber, MM;
Publicação
Learning from Data Streams: Processing Techniques in Sensor Networks
Abstract
Sensor networks consist of distributed autonomous devices that cooperatively monitor an environment. Sensors are equipped with capacities to store information in memory, process this information and communicate with their neighbors. Processing data streams generated from wireless sensor networks has raised new research challenges over the last few years due to the huge numbers of data streams to be managed continuously and at a very high rate. The book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. The set of chapters covers the state-of-art in data stream mining approaches using clustering, predictive learning, and tensor analysis techniques, and applying them to applications in security, the natural sciences, and education. This research monograph delivers to researchers and graduate students the state of the art in data stream processing in sensor networks. The huge bibliography offers an excellent starting point for further reading and future research. © Springer-Verlag Berlin Heidelberg 2007. All rights are reserved.
2008
Autores
Rodrigues, PP; Gama, J; Lopes, L;
Publicação
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS
Abstract
Nowadays applications produce infinite streams of data distributed across wide sensor networks. In this work we study the problem of continuously maintain a cluster structure over the data points generated by the entire network. Usual techniques operate by forwarding and concentrating the entire data in a central server, processing it as a multivariate stream. In this paper, we propose DGClust, a new distributed algorithm which reduces both the dimensionality and the communication burdens, by allowing each local sensor to keep an online discretization of its data stream, which operates with constant update time and (almost) fixed space. Each new data point triggers a cell in this univariate grid, reflecting the current state of the data stream at the local site. Whenever a local site changes its state, it notifies the central server about the new state it is in. This way, at each point in time, the central site has the global multivariate state of the entire network. To avoid monitoring all possible states, which is exponential in the number of sensors, the central site keeps a small list of counters of the most frequent global states. Finally, a simple adaptive partitional clustering algorithm is applied to the frequent states central points in order to provide an anytime definition of the clusters centers. The approach is evaluated in the context of distributed sensor networks, presenting both empirical and theoretical evidence of its advantages.
2010
Autores
Severo, Milton; Gama, Joao;
Publicação
Ubiquitous Knowledge Discovery - Challenges, Techniques, Applications
Abstract
In most challenging applications learning algorithms act in dynamic environments where the data is collected over time. A desirable property of these algorithms is the ability of incremental incorporating new data in the actual decision model. Several incremental learning algorithms have been proposed. However most of them make the assumption that the examples are drawn from a stationary distribution [14]. The aim of this study is to present a detection system (DSKC) for regression problems. The system is modular and works as a post-processor of a regressor. It is composed by a regression predictor, a Kalman filter and a Cumulative Sum of Recursive Residual (CUSUM) change detector. The system continuously monitors the error of the regression model. A significant increase of the error is interpreted as a change in the distribution that generates the examples over time. When a change is detected, the actual regression model is deleted and a new one is constructed. In this paper we tested DSKC with a set of three artificial experiments, and two real-world datasets: a Physiological dataset and a clinic dataset of sleep apnoea. Sleep apnoea is a common disorder characterized by periods of breathing cessation (apnoea) and periods of reduced breathing (hypopnea) [7]. This is a real-world application where the goal is to detect changes in the signals that monitor breathing. The experimental results showed that the system detected changes fast and with high probability. The results also showed that the system is robust to false alarms and can be applied with efficiency to problems where the information is available over time. © 2010 Springer-Verlag.
2012
Autores
Moreira Matias, L; Gama, J; Ferreira, M; Damas, L;
Publicação
2012 15TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC)
Abstract
In the last decade, the real-time vehicle location systems attracted everyone attention for the new kind of rich spatio-temporal information. The fast processing of this large amount of information is a growing and explosive challenge. Taxi companies are already exploring such information in efficient taxi dispatching and time-saving route finding. In this paper, we propose a novel methodology to produce online short term predictions on the passenger demand spatial distribution over 63 taxi stands in the city of Porto, Portugal. We did so using time series forecasting techniques to the processed events constantly communicated for 441 taxi vehicles. Our tests - using 4 months of real data - demonstrated that this model is a true major contribution to the driver mobility intelligence: 76% of the 86411 demanded taxi services were accurately forecasted in a 30 minutes time horizon.
2011
Autores
Sebastiao, R; Silva, MM; Gama, J; Mendonca, T;
Publicação
2012 25TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
In the clinical practice the concerns about the administration of hypnotics and analgesics for minimally invasive diagnostics and therapeutic procedures have enormously increased in the past years. The automatic detection of changes in the signals used to evaluate the depth of anesthesia is hence of foremost importance in order to decide how to adapt the doses of hypnotics and analgesics that should be administered to patients. The aim of this work is to online detect drifts in the referred depth of anesthesia signals of patients undergoing general anesthesia. The performance of the proposed method is illustrated using BIS records previously collected from patients subject to abdominal surgery. The results show that the drifts detected by the proposed method are in accordance with the actions of the clinicians in terms of times where a change in the hypnotic or analgesic rates had occurred. This detection was performed under the presence of noise and sensor faults. The presented algorithm was also online validated. The results encourage the inclusion of the proposed algorithm in a decision support system based on depth of anesthesia signals.
1998
Autores
Gama, J;
Publicação
Machine Learning: ECML-98, 10th European Conference on Machine Learning, Chemnitz, Germany, April 21-23, 1998, Proceedings
Abstract
Using multiple classifiers for increasing learning accuracy is an active research area. In this paper we present a new general method for merging classifiers. The basic idea of Cascade Generalization is to sequentially run the set of classifiers, at each step performing an extension of the original data set by adding new attributes. The new attributes are derived from the probability class distribution given by a base classifier. This constructive step extends the representational language for the high level classifiers, relaxing their bias. Cascade Generalization produces a single but structured model for the data that combines the model class representation of the base classifiers. We have performed an empirical evaluation of Cascade composition of three well known classifiers: Naive Bayes, Linear Discriminant, and C4.5. Composite models show an increase of performance, sometimes impressive, when compared with the corresponding single models, with significant statistical confidence levels. © Springer-Veriag Berlin Heidelberg 1998.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.