2023
Autores
Rodrigues, L; Magalhaes, SA; da Silva, DQ; dos Santos, FN; Cunha, M;
Publicação
AGRONOMY-BASEL
Abstract
The efficiency of agricultural practices depends on the timing of their execution. Environmental conditions, such as rainfall, and crop-related traits, such as plant phenology, determine the success of practices such as irrigation. Moreover, plant phenology, the seasonal timing of biological events (e.g., cotyledon emergence), is strongly influenced by genetic, environmental, and management conditions. Therefore, assessing the timing the of crops' phenological events and their spatiotemporal variability can improve decision making, allowing the thorough planning and timely execution of agricultural operations. Conventional techniques for crop phenology monitoring, such as field observations, can be prone to error, labour-intensive, and inefficient, particularly for crops with rapid growth and not very defined phenophases, such as vegetable crops. Thus, developing an accurate phenology monitoring system for vegetable crops is an important step towards sustainable practices. This paper evaluates the ability of computer vision (CV) techniques coupled with deep learning (DL) (CV_DL) as tools for the dynamic phenological classification of multiple vegetable crops at the subfield level, i.e., within the plot. Three DL models from the Single Shot Multibox Detector (SSD) architecture (SSD Inception v2, SSD MobileNet v2, and SSD ResNet 50) and one from You Only Look Once (YOLO) architecture (YOLO v4) were benchmarked through a custom dataset containing images of eight vegetable crops between emergence and harvest. The proposed benchmark includes the individual pairing of each model with the images of each crop. On average, YOLO v4 performed better than the SSD models, reaching an F1-Score of 85.5%, a mean average precision of 79.9%, and a balanced accuracy of 87.0%. In addition, YOLO v4 was tested with all available data approaching a real mixed cropping system. Hence, the same model can classify multiple vegetable crops across the growing season, allowing the accurate mapping of phenological dynamics. This study is the first to evaluate the potential of CV_DL for vegetable crops' phenological research, a pivotal step towards automating decision support systems for precision horticulture.
2023
Autores
da Silva, DQ; dos Santos, FN; Filipe, V; Sousa, AJ;
Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
To tackle wildfires and improve forest biomass management, cost effective and reliable mowing and pruning robots are required. However, the development of visual perception systems for forestry robotics needs to be researched and explored to achieve safe solutions. This paper presents two main contributions: an annotated dataset and a benchmark between edge-computing hardware and deep learning models. The dataset is composed by nearly 5,400 annotated images. This dataset enabled to train nine object detectors: four SSD MobileNets, one EfficientDet, three YOLO-based detectors and YOLOR. These detectors were deployed and tested on three edge-computing hardware (TPU, CPU and GPU), and evaluated in terms of detection precision and inference time. The results showed that YOLOR was the best trunk detector achieving nearly 90% F1 score and an inference average time of 13.7ms on GPU. This work will favour the development of advanced vision perception systems for robotics in forestry operations.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.