2025
Autores
Loureiro, P; Oliveira, M; Brito, P; Oliveira, L;
Publicação
Springer Proceedings in Mathematics and Statistics
Abstract
Air pollution is a global challenge with deep implications in public health and environment. We examine air quality data from a monitoring station in Entrecampos, Lisbon, Portugal, using Symbolic Data Analysis. The dataset consists of hourly concentrations of nine pollutants during three years, which are logarithmically transformed and aggregated in intervals, taking the daily minimum and maximum values. The symbolic mean and variance are estimated for each variable through the method of moments, and the pairwise dependencies are captured using a bivariate copula. Symbolic principal component scores are obtained from the estimated covariance matrix and used to fit generalized extreme value distributions. Outlier maps, based on these distributions’ quantiles, are used to identify outlying observations. A comparative analysis with daily average-based outlier detection methods is conducted. The results show the relevance of Symbolic Data Analysis in revealing new insights into air quality. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.