2020
Autores
Ferreira, PJC; Gomes, LMF; Oliveira, AS; Moura, RMM; Lourenço, JM;
Publicação
A Aplicação do Conhecimento Científico nas Engenharias 3
Abstract
2020
Autores
Matos, T; Faria, CL; Martins, MS; Henriques, R; Gomes, PA; Goncalves, LM;
Publicação
SENSORS
Abstract
A cost-effective optical instrument for continuous in-situ monitoring applications is presented. With a production cost in raw materials of 38 Euro, a power consumption of 300 mu A in sleep mode and 100 mA in active mode (5 ms reading), and a capacity to monitor turbidity and sedimentary displacement at eight different depths in the water column, the sensor was developed for sediment monitoring in coastal areas. Due to the extent and dynamics of the processes involved in these areas, observations require a wide spatial and temporal resolution. Each of the eight monitoring nodes uses one infrared backscatter channel, to estimate turbidity and sediment concentration, and one ultraviolet with one infrared transmitted light channels to distinguish organic/inorganic composition of the suspended material load. An in-lab calibration was conducted, using formazine to correlate turbidity with the electronic outputs of the instrument. An analysis of the influence of external light sources and correction techniques were performed. Moreover, an in-lab experiment was conducted to study the behaviour of the sensor-to-sediment transport, wash load and sediment accumulation. The device was deployed, with a water level sensor, in an estuarine area with high sediment dynamics. The monitoring data were analysed, showing the potential of the device to continuously monitor turbidity, sediment processes, and distinguish between organic and inorganic matter, at the different depths in the water column.
2019
Autores
Truppel, A; Tseng, TM; Bertozzi, D; Alves, JC; Schlichtmann, U;
Publicação
PROCEEDINGS OF THE 2019 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN (ISPD '19)
Abstract
Optical Networks-on-Chip (ONoCs) are a promising solution for high-performance multi-core integration with better latency and bandwidth than traditional Electrical NoCs. Wavelength-routed ONoCs (WRONoCs) offer yet additional performance guarantees. However, WRONoC design presents new EDA challenges which have not yet been fully addressed. So far, most topology analysis is abstract, i.e., overlooks layout concerns, while for layout the tools available perform Place & Route (P&R) but no topology optimization. Thus, a need arises for a novel optimization method combining both aspects of WRONoC design. In this paper such a method, PSION, is laid out. When compared to the state-of-the-art design procedure, results show a 1.8x reduction in maximum optical insertion loss.
2019
Autores
da Silva, JM; Alves, JC;
Publicação
2019 XXXIV CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS (DCIS)
Abstract
An alternative approach to compute the signal to noise ratio of analogue to digital converters based on the computation of the cross-correlation coefficient of the captured response is proposed here. It is shown, after simulation and experimental results, that this approach allows obtaining good accuracy results with the added advantages of not requiring coherent sampling and high purity sine wave stimuli.
2019
Autores
Rodrigues, PM; Cruz, NA; Pinto, AM;
Publicação
OCEANS 2018 MTS/IEEE Charleston, OCEAN 2018
Abstract
It is common the use of the sonar technology in order acquire and posteriorly control the distance of an underwater vehicle towards an obstacle. Although this solution simplifies the problem and is effective in most cases, it might carry some disadvantages in certain underwater vehicles or conditions. In this work it is presented a system capable of controlling the altitude of an underwater vehicle using computer vision. The sensor capable of computing the distance is composed of a CCD camera and 2 green pointer lasers. Regarding the control of the vehicle, the solution used was based on the switching of two controllers, a velocity controller (based on a PI controller), and a position controller (based on a PD controller). The vehicle chosen to test the developed system was a profiler, which main task is the vertical navigation. The mathematical model was obtained and used in order to validate the controllers designed using the Simulink toolbox from Matlab. It was used a Kalman filter in order to have a better estimation of the state variables (altitude, depth, and velocity). The tests relative to the sensor developed responsible for the acquisition of the altitude showed an average relative error equal to 1 % in the range from 0 to 2.5 m. The UWsim underwater simulation environment was used in order to validate the integration of the system and its performance. © 2018 IEEE.
2019
Autores
Cruz, NA;
Publicação
2019 IEEE UNDERWATER TECHNOLOGY (UT)
Abstract
The maximum mission duration and range of an Autonomous Underwater Vehicle are governed by the amount of energy carried on board and the way it is spent during the mission. While an increase in battery capacity and a decrease in electronics demand yield a direct increase in vehicle range, the impact of velocity variation is not so obvious. With slower velocities, most of the energy will be spent in electronics, not in motion, while for faster velocities a lot of energy will be needed to balance drag. Flying-type AUVs have a minimum velocity for the control surfaces to be effective, reducing the range of values for optimization. Hovering type AUVs, on the other hand, are typically slower moving platforms, able to travel at arbitrarily slow velocities. This paper addresses the analysis of the power consumption of hovering type AUVs, providing guidelines and analytical expressions to compute the optimal velocity when the vehicle travels in a single direction, and also when the trajectory is a combination of horizontal and vertical motion.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.